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ABSTRACT 

Figure correction of X-ray telescope mirrors will be critical for future missions that require high angular resolution and 

large collecting areas. In this paper, we show that ion implantation offers a method of correcting figure errors by 

imparting sub-surface in-plane stress in a controllable magnitude and location in Schott D-263 glass, Corning Eagle XG 

glass, and crystalline silicon substrates. In addition, we can in theory achieve nearly exact corrections in Schott D-263 

glass, by controlling the direction of the stress. We show that sufficient stress may be applied to Schott D-263 glass to 

achieve figure correction in mirrors with simulated initial figure errors. We also report on progress of a system that will 

be capable of correcting conical shell mirror substrates. 
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1. INTRODUCTION 

The next X-ray observatory will require extremely accurate mirror substrates in order to achieve the stated goal of 0.5 

arcsecond half-power diameter (HPD) angular resolution with 30 times greater effective area than the Chandra X-ray 

Observatory
1
. One potential route to fabricating sufficiently accurate mirrors is to first make a substrate with decent 

figure, small mid-spatial frequency errors, and low micro-roughness; and to correct the figure error by generating in-

plane stress to impose a controlled distortion in the substrate. Ion implantation, illustrated in Figure 1, is a viable method 

of generating this in-plane stress. Ion implantation also enables, at least in Schott D-263 glass, a near-exact figure 

correction, in a kinematically-mounted mirror, by controlling the direction of stress in addition to the location and 

magnitude. In addition, the time required to implant enough ions could be on the order of a few hours per mirror with a 

research accelerator, and much faster with a commercial accelerator. 

 

Figure 1. Substrates may be corrected by raster-scanning an ion beam, dwelling longer for higher stress. 



Slumped glass
2,3,4

 or crystalline silicon
5
 may be viable substrate materials. To date, the best mirror substrates have been 

made with Schott D-263 glass by NASA Goddard Space Flight Center
2
. The limitation appears to be mid-frequency 

ripples, which will be difficult to correct with any stress-based figure correction scheme, but could possibly be addressed 

using differential deposition
6
. As such, our group at MIT is developing air bearing slumping

3
, which we expect to 

produce acceptable figure with minimal mid-frequency ripples. 

Several methods of figure correction are being evaluated by other groups that rely on applying equi-biaxial stress on 

mirror substrates in a controllable magnitude and location
7,8

. With any of these methods, to achieve a near-exact 

correction of thin shell substrates, as would be required for a 0.5 arcsecond telescope, we require the correction scheme 

to either:  

1. apply an equi-biaxial stress, and have a stable, over-constrained mounting scheme that provides the necessary 

reactions to allow a good correction
7
; or 

2. apply a general stress to achieve a near-perfect correction in a free mirror, and use a mounting scheme that 

minimizes the disturbance to the mirror 

The ability to apply a general stress state, which ion implantation provides, requires lower correction stress and allows 

the mirrors to be mounted kinematically. We discuss this in Section 2.  

In Section 3, we show experimental results demonstrating that substantial equi-biaxial and uniaxial stress may be 

generated in Schott D-263 glass. In other words, a general stress state may be applied in this material, allowing near-

exact correction. In addition, we show experimental results for equi-biaxial stress in Corning Eagle XG glass and 

crystalline silicon. For these two materials, we have not observed substantial uniaxial stress, but the magnitude of 

measured equi-biaxial stress appears sufficient to match the correction performance of piezo-electric actuators. 

It is important to understand what figure errors may be corrected by applying a general stress state, given that the stress 

that we may apply with ion implantation is limited, as with any other method. In Section 4, we show results from Monte 

Carlo simulations of fictive surfaces with realistic power spectral density functions. We find that many surfaces may be 

corrected to better than 0.05 arcsecond HPD, but this becomes more difficult as the radius of curvature decreases. We 

also performed Monte Carlo simulations to understand how sensitive corrections are to the stress magnitude. 

 

2. THE IMPORTANCE OF CONTROLLING STRESS DIRECTION 

At least three groups are currently investigating methods of correcting figure errors in thin X-ray telescope mirror 

substrates using in-plane stress, as described by O’Dell, et al.
9
. In each of these methods, a strain (known as a mismatch 

strain) is generated in a thin film on the surface of the mirror substrate. A stress in the film arises from this mismatch 

strain. The integration of the film stress over the thickness of the film, called the integrated stress, must be balanced by 

bending in the substrate. All of the methods currently being studied rely on the ability to change the magnitude and 

location of the mismatch strain (and therefore the stress). However, this is not enough to achieve perfect correction in a 

free substrate. In order to achieve near-perfect correction, we must control the direction of stress in addition to the 

magnitude and location. We have found that substrates may be corrected, in theory, to a residual RMS slope error of 

0.01 arcsecond or better; we will refer to this as a full correction for simplicity, while acknowledging that it has not been 

proven that this provides a perfect correction. 

The film with a mismatch strain is left in a state of plane stress (i.e., the stress components normal to the surface are 

zero), and there are three non-zero components of stress: two normal stresses, and a shear stress. Other than ion 

implantation, all stress-based figure correction methods under consideration allow control of the equi-biaxial stress only; 



that is, the two normal stress components are equal, and the shear stress is zero. However, as several groups have found, 

good correction with equi-biaxial stress may be achieved by relying on the mounting structure
10,11

, but equi-biaxial stress 

alone does not appear to be sufficient for full correction. 

If we can control the three components of plane stress (which we refer to as general stress control), then we may nearly 

perfectly correct a mirror substrate, and we may then mount it kinematically. This offers a few advantages compared to 

an over-constrained mounting scheme. First, the goal of the mount is to distort the mirror as little as possible, which may 

be easier than requiring the mount to maintain a specified non-zero stress state. Second, a perfectly-kinematic mount 

would allow only rigid body deformations of the mirror, and not figure distortions. Third, a kinematic mount would be 

easier to align. The group at NASA Goddard Space Flight Center
12

 is currently working on a mounting scheme that is 

approximately kinematic, and it is expected to provide lower distortion than the current, over-constrained scheme. 

However, to achieve adequate correction of figure errors in a free mirror, we require general stress control. 

 

2.1 Example in flat plates 

The necessity of controlling the different components of the plane stress tensor is simplest to understand by considering 

a thin flat round plate with a figure error described by a set of Zernike polynomials. For reference, a table of Zernike 

polynomials (excluding tip, tilt, and piston) is shown in Figure 2. We may impose a mismatch strain between the 

substrate and a thin film. The equilibrium equations describing this system have been derived by Huang, et al.
13

. With 

some tedious algebra, we may show that Zernike polynomial mismatch strain fields are solutions to these bi-harmonic 

governing equations. Since this subject is not the focus of this paper, only some relevant observations will be described. 

We note that this mismatch strain results in a stress in the film, which is ultimately what causes deformation. However, 

any “stress-based figure correction” method actually imposes the mismatch strain. Here, we refer to the mismatch strain 

fields, but it is equally acceptable to consider stress fields. In Section 3, we report stress magnitudes, not strain. 

 

Figure 2. Table of Zernike polynomials illustrating which figure errors may be corrected with equi-biaxial mismatch 

strain. All shapes may be corrected with a general mismatch strain. 



If we consider a flat plate with only spherical figure error,   
 , we may correct this simply by imposing a uniform equi-

biaxial mismatch strain on the surface in the proper magnitude. Likewise, any figure error in the central three columns 

(highlighted in green in Figure 2) may be exactly corrected by imposing equi-biaxial strain on the surface. 

In contrast, if we consider a flat plate with only astigmatism error,   
  , we find that there is no equi-biaxial strain that 

exactly corrects this error. In fact, this is the case with all of the Zernike polynomials outside the central three columns 

(highlighted in red in Figure 2). Any attempt to correct the polynomials outside the central three columns generates new 

errors at the edge of the pyramid. In order to correct these errors, we require a general mismatch strain. 

This problem is exacerbated by the curved substrates used for X-ray telescope mirrors, and becomes more problematic 

as the radius of curvature is decreased. In order to achieve a correction sufficient for a telescope with a 0.5-arcsecond 

half-power diameter point-spread function, without imposing external loading via the mirror mounts, we must be able to 

control different components of the mismatch strain tensor. This is illustrated in Section 2.2.  

 

2.2 Correction of conical shell substrates: a rough comparison 

In this section, we consider a particular mirror figure error, shown in Figure 3. We aim to correct this mirror, mounted 

kinematically, using (1) an equi-biaxial mismatch strain field; and later, (2) a general mismatch strain field. We note that 

this figure error is pure fantasy and is limited to very low spatial frequencies with the intention of making this as easy to 

correct as possible; in Section 4, we consider much more realistic surface figure errors than this. The point of this study 

is simply to illustrate that controlling the components of strain independently results in better correction, at much lower 

stress magnitude, and with a smooth stress field. More effort in optimizing these methods may result in improvements in 

both cases, but these results illustrate the comparison.  

 

Figure 3. A sample figure error, used to compare effectiveness of equi-biaxial stress and general stress control 

We may calculate the equi-biaxial strain field required to correct a given figure error by the following process, described 

in more detail by Chalifoux
14

. First, we calculate the influence function of a test mismatch strain at each node of a finite 

element model. We then perform a constrained least squares optimization, using a trust-region-reflective algorithm in 

MATLAB, of the equi-biaxial mismatch strain magnitudes, with the goal to minimize surface height error (for 



computational simplicity). The magnitude of strain is constrained, allowing for implantation on both the front and rear 

surfaces of the substrate. Once the minimum surface height error is obtained, the residual axial slope error is calculated. 

Figure 4 shows the results of this process. As expected, the residual error decreases as the limit on integrated stress 

increases. In addition, for mirrors with a larger radius of curvature, the correction is more complete. 

 

Figure 4. Both the residual error and required stress magnitude are significantly lower for a general strain than for an 

equi-biaxial strain. Using equi-biaxial strain fields results in a plateau just under 1 arcsecond HPD. 

In order to calculate the general mismatch strain field required to correct this same figure error, we may use a simpler 

procedure. Instead of calculating influence functions at each node, we may impose test mismatch strain fields with 

magnitudes described by polynomials (in this case, we are using Legendre-Legendre polynomials). We impose one 

polynomial for an equi-biaxial strain, one for an anti-biaxial strain (where the mismatch normal strain in one direction is 

opposite in sign but equal in magnitude to the other normal strain), and one for a shear strain (which is equal to an anti-

biaxial strain but rotated by 45° on the surface). We may then perform an unconstrained linear least squares fit, using the 

psuedoinverse of a matrix containing the responses to each test input strain function, to the desired figure correction. We 

find that the magnitude of stress required is achievable for a full correction, so we do not need to employ constrained 

optimization when we impose a general mismatch strain field. 

In Figure 4, we see that using a general mismatch strain we get excellent correction of each of the mirror substrates, 

using a much lower magnitude of stress. While this study is not definitive, it is consistent with the findings of Davis, et 

al.
15

, who found that correcting mirrors with equi-biaxial strain and a kinematic mount is not very effective. It is also 

consistent with the work of Kolodziejczak, et al.
10

, who found that figure correction using equi-biaxial strain is more 

difficult with smaller mirror radii. Neither of these studies, nor the one reported here, shows full correction of mirror 

substrates when using equi-biaxial mismatch strain only. This is consistent with the observations for flat plates, 

described in Section 2.1. 



3. EXPERIMENTAL STRESS MEASUREMENTS 

3.1 Equi-biaxial stress 

Implanting ions at normal-incidence to a surface results in equi-biaxial stress through several mechanisms, depending on 

the ion beam parameters and the substrate material. This equi-biaxial stress, much like piezo-electric actuators or 

magneto-strictive films, may be used to correct figure errors in conical shell mirror substrates. As we have seen in 

Section 2, and as shown by Reid, et al.
7
, correcting figure errors to a good enough figure for a 0.5 arcsecond telescope, 

using only equi-biaxial stress, would require a mounting scheme that over-constrains the mirror, but it may be possible. 

Figure 5 shows the equi-biaxial stress measured while implanting ions at normal incidence to the sample surface, in 

Schott D-263 glass and Corning Eagle XG glass. Figure 6 shows equi-biaxial stress in crystalline silicon. Table 1 lists 

the ion beam parameters for these experiments. These data were obtained using an in-situ curvature measurement device, 

described by Chalifoux, et al.
16

. It is clear that the different materials exhibit significantly different behavior; the physics 

behind this are fairly well-understood, and are described in Section 3.3. 

To obtain these results in glass, we have used high-energy light ions, for two reasons: (1) the depth of implantation is 

larger, so the integrated stress may be higher; and (2) a thermal-spike-driven stress generation mechanism (recently 

reviewed by Klaumünzer
17

) becomes more pronounced in this regime. Indeed, the magnitude of stress generated in 

Schott D-263 implanted with 6 MeV Si
+++

 ions is about an order of magnitude higher than the stress generated with 0.8 

MeV Si
+
 ions, as shown in Figure 7. 

The behavior of stress generated by ion implantation into silicon is believed to be dominated by amorphization of 

crystalline silicon, which causes a compressive stress to build up. We have seen little increase in stress in silicon 

resulting from high-energy implants, or from implants with light ions. Amorphization is believed to be primarily a result 

of damage due to nuclear collisions between the ions and substrate atoms
19

. The number of nuclear collisions per ion 

increases as the ion mass is increased, and as the ion energy is decreased.  A significantly higher mirror correction 

throughput may be achieved using heavy ions at lower energy, where these nuclear collisions become more dominant. 

 

Substrate material Schott D-263 Schott D-263 Corning Eagle silicon Schott D-263 

Ion energy   [MeV] 0.8 6 6 6 6 

Ion species Si
+++ 

Si
+++ 

Si
+++ 

Si
+++ 

O
+++

 

Angle of incidence   [°] 0 0 0 0 45 

Ion flux [ion cm
-2

 sec
-1

] 6 x 10
10

 2.5 x 10
10 

1 x 10
11 

2 x 10
11

 1.2 x 10
10 

Max. equi-biaxial 

integrated stress  [N/m] 
+30 -250 +250 -100 

-50 equibiaxial, 

+100 uni-axial 

Table 1. Experimental parameters for the plots in Section 3. 



 

Figure 5. Equi-biaxial integrated stress in Corning Eagle XG and Schott D-263 glass, generated by implanting 6 MeV 

Si
+++

 ions at normal incidence. The maximum magnitude is about 250 N/m for each. 

 

Figure 6. Equi-biaxial integrated stress in crystalline silicon, generated by implanting 6 MeV Si
+++

 ions at normal 

incidence. The maximum magnitude is 110 N/m. 



 

Figure 7. Equi-biaxial integrated stress in D-263 glass is significantly different at different ion energies. 

 

3.2 Uni-axial stress 

We have shown, in Section 2, that controlling the magnitude, location, and direction of stress are all important for figure 

correction of conical shell mirror substrates in a kinematic mount. Here, we show experimental results demonstrating 

that large anisotropic stress is generated from angled implants of high-energy light ions into Schott D-263 glass. We will 

show in Section 4 that we can correct many initial figure errors using the magnitudes of stress that we measure.  

Similar to the experiments with normal-incidence implants, we measured stress with an in-situ curvature measurement 

device. In this case, the device measures curvature in two directions. All of these experiments were performed at a 45° 

ion beam angle of incidence. More details may be found in Table 1. Figure 8 shows results for 6 MeV O
+++

 ions 

implanted into Schott D-263. We measured two stresses: uni-axial, which is along the projection of the ion beam onto 

the surface; and equi-biaxial. Here, we are able to achieve a uniaxial stress of +100 N/m and an equibiaxial stress of -50 

N/m. It is possible that by tuning the ion beam angle of incidence, we may achieve a more pure uniaxial stress. 

To understand the choice of stress representation as uni-axial and equi-biaxial stress, consider a general state of plane 

stress, illustrated by Mohr’s circle (refer to Figure 9). This state of stress, shown in blue (1), has three components: two 

normal stresses and a shear stress. An equivalent state of stress, but expressed in a rotated coordinate frame, is shown in 

green (2), and consists of only two normal stresses (i.e., the principal stresses). Since our results show a more tensile 

stress in the beam-parallel direction than in the beam-perpendicular direction, we may express our results in terms of an 

equi-biaxial stress (the lower principal stress), and a uni-axial stress (the difference between the principal stresses), 

shown in red (3). This is useful because an angled implant provides a nearly uni-axial stress, while a normal-incidence 

implant results in equi-biaxial stress. 



 

Figure 8. Angled implant into D-263 glass, showing highly anisotropic stress 

 

Figure 9. Mohr’s circle, illustrating the different representations of stress used in this work 



3.3 Physics of stress generation 

The stress-fluence curve of the materials discussed here results from three primary mechanisms: morphology changes, 

relaxation, and thermal-spike driven stress generation. These three mechanisms have been studied in detail by other 

researchers, and models have been developed to describe the behavior of some materials
18,19,20

. Here we briefly describe 

these mechanisms. 

Crystalline silicon and glasses undergo changes in morphology, which results in a density change. Crystalline silicon 

becomes amorphous as it is damaged from implantation
19

. Since amorphous silicon is less dense than crystalline silicon, 

the expansion results in a compressive stress in the implanted region. This is believed to be the primary mechanism 

driving compressive stress in silicon. In contrast, silicate glasses typically exhibit an increase in density, and therefore a 

tensile stress, due to morphology changes
21

. Density changes result in an isotropic strain, and therefore an equi-biaxial 

stress. While Eagle XG experiences this densification, it appears that Schott D-263 exhibits very little densification. 

Since a densification results in a tensile stress, most glasses show an initial increase in tensile stress. Figure 7 illustrates 

that Schott D-263, especially for high ion energy, does not exhibit this behavior nearly to the same degree as typical 

glasses: the stress is compressive almost immediately after the ion beam impinges on the sample. 

Beyond morphology changes, amorphous materials experience stress generation and relaxation, which appear to be due 

to the same phenomena: thermal spikes caused by very large energy deposition density from an incoming ion. For high-

energy light ions, such as 6 MeV Si
+++

, the vast majority of energy transfer between the ion and substrate is via the 

electronic subsystem, rather than nuclear collisions. This energy transfer is confined to a long, narrow cylinder several 

microns long and only a few nanometers in diameter. A simple model describing the strain  resulting from this thermal 

spike is described by Trinkaus and Ryazanov
20

. An illustration of the following process is shown in Figure 10. First, 

rapid heating in the ion track causes thermal expansion relative to the substrate. Due to the large aspect ratio 

(length/diameter ~ 1000) of the ion track, significant deviatoric stress (i.e., non-pressure stress) develops in the ion track. 

Next, this deviatoric stress relaxes due to reduced viscosity of the heated amorphous material, leaving only pressure in 

the ion track. Finally, upon cooling, the residual stress in the ion track is compressive perpendicular to the ion track axis, 

and tensile along the axis. Many randomly-located thermal spikes result in an average stress build-up throughout the 

implanted layer. 

 

Figure 10. Illustration of thermal spike mechanism showing stress along and perpendicular to the ion track during each 

of the three regimes of the thermal spike stress generation process. 



The relaxation mechanism is somewhat simpler. If there is some local stress in the implanted layer before a thermal 

spike occurs, any deviatoric components of that stress may relax once the ion track viscosity is low. Therefore, there are 

thermal spike stress generation and relaxation mechanisms that act simultaneously, and the stress in the implanted layer 

eventually reaches an equilibrium. As the ion beam is tilted, the tensile stress along the ion beam acts partly in-plane, 

and the in-plane stresses in the implanted layer may be different parallel to and perpendicular to the projection of the ion 

beam vector onto the substrate surface. This explains the results shown in Figure 8. 

 

4. MONTE CARLO SIMULATIONS 

4.1 Simulated correction of conical shell mirrors 

Since we have shown that we can control the full plane stress tensor of Schott D-263 glass, we would like to know what 

level of residual figure error could be corrected using ion implantation. To do this, we use an algorithm as described in 

Section 3.2 for a general surface strain field generation. That is, we impose no constraint on the magnitude of stress we 

can apply. Instead we simply check whether the surface is correctable given the magnitudes of stress we can generate.  

Since we do not have a set of actual figure errors of D-263 mirrors, we perform a Monte Carlo simulation with fictive 

surfaces: we generate a number of fictive surfaces with error functions composed of Legendre-Legendre polynomials 

that have approximately a power-law power spectral density function and mean initial residual HPD ≈ 8 arcsecond. The 

slope of the PSD is -2 decades/decade, and we have included spatial wavelengths down to 4 mm, limited for now by the 

Finite Element mesh size.  A sample set of power spectral densities, and a histogram showing the distribution of initial 

figure error, are shown in Figure 11. For all of the corrections, the residual surface error after correction is better than 

0.05 arcsecond HPD. This small residual may be due to approximations made to speed the calculation. Figure 12 shows 

the fraction of mirrors that could be fully corrected (to 0.05 arc-sec HPD or better) in each bin, based on our 

experimental results with uni-axial and equi-biaxial stress. We made no effort to find a best correction for the samples 

that were not correctable. We found that almost all large-radius mirrors (R ≥ 500 mm) we tested were fully correctable. 

It is again clear that mirrors with a smaller radius are more difficult to correct. 

 

Figure 11. Figure errors of mirrors corrected in Monte Carlo simulation. Left: Power spectral density (black line is the 

average PSD). Right: histogram of initial figure errors. 



 

Figure 12. Almost all large-radius mirrors could be fully corrected. The fraction of correctable surfaces decreases 

rapidly with decreasing radius of curvature, and with increasing initial error. 

 

4.2 Sensitivity of correction to stress errors 

We conducted a simple Monte Carlo simulation to estimate how sensitive the corrections are to random error in the 

generated stress. To do this, we randomly vary the stress at each node in the finite element model, following a normal 

distribution with a standard deviation equal to the error fraction we would like to test. We test error fraction standard 

deviations ranging from 0.1% to 10%. The results are shown in Figure 13, for such a sensitivity test for a surface with a 

PSD near the mean in Figure 11, and with an initial figure of 8.9 arcsecond HPD. 

 

Figure 13. The residual error rises almost linearly with RMS stress magnitude error 



The error bars represent the standard deviation of the results. It is evident from these results that we should keep the 

accuracy of stress to better than about ±5% standard deviation in order to make a correction to 0.2 arcsecond HPD. 

However, if we allow for iterative corrections, we could relax this requirement. This analysis is also of course only valid 

for a specific surface; before specifying accuracy requirements we will need to evaluate real surfaces. 

5. FUTURE WORK 

We are currently in the process of building a vacuum chamber with the ability to manipulate large substrates (200 mm x 

130 mm) in two rotational degrees of freedom. We are also extending the accelerator beam-line we currently use to 

allow expanded ion beam scanning capability, to cover these large substrates.  We expect this new hardware to allow us 

to correct figure errors in flat and curved mirror substrates, and to gain a better understanding of ion implantation. A 

representative diagram of this chamber is shown in Figure 14. The mechanical components have been removed for 

clarity. 

Previously, we have shown stress stability results for implanted samples
14,16

, as well as results showing no roughening of 

implanted substrates. These are very important aspects to consider, and could impact the usefulness of ion implantation 

substantially. Those experiments were conducted on samples implanted with much lower ion beam energy than we 

currently use, so we plan to repeat these experiments with the current implant parameters. 

 

Figure 14. CAD image of mechanical components of vacuum chamber currently being built 

 

6. CONCLUSIONS 

We have shown that with ion implantation we can generate substantial equi-biaxial stress in Schott D-263 glass, Corning 

Eagle XG glass, and crystalline silicon substrates; and we can additionally control the direction of stress in Schott D-263 

glass. With this ability in Schott D-263, in theory we may provide a nearly-full correction, to about 0.01 arcsecond RMS 

axial slope error, over the entire surface. This requires no external loads via the mounting structure. 
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