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ABSTRACT 

We present a thin wafer lamination method for producing X-ray telescope mirrors aiming at 1-10’’ optics quality and 
low fabrication cost. Traditional grinding/polishing and hot slumping methods find difficulty to meet the required figure 
accuracy when the mirror thickness is below 1 mm. In this paper, we introduce a new fabrication procedure to satisfy 
those requirements: first, we laminate flat and ultra-thin silicon wafers on a well polished mandrel via direct bonding 
until the wafer stack achieves the designed thickness. Second, we release the stack from the mandrel since the direct 
bonding is temporary. Third, we anneal the stack to create permanent bonding and stabilize the deformation. In such a 
manner, the intrinsic waviness of each wafer can be alleviated. Our FEA simulation shows the RMS slope error of the 
stack surface released from a flat mandrel is improved by a factor of 6 when the layer number is doubled, regardless of 
the total thickness. In the case of a cylindrical mandrel, the local waviness could be improved by a factor of 4000, while 
a cone angle problem appears and needs to be resolved in future work. We also developed the fabrication method and 
successfully optimized our wafer cleaning process. 
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1. INTRODUCTION 
Next generation X-ray telescopes require light weight optics with high angular resolution(<1” for Lynx & 1-10” for a 
super-NuSTAR) and an effective area as large as Athena.1, 2 Traditional mirror technologies such as the polishing and 
grinding method applied to produce Chandra’s mirror would lead to an unaffordable fabrication cost.3,4 The hot 
slumping method is suitable for producing low cost glass mirrors with moderate optics quality,5 however, the potential 
ability of this method to provide arc-second optics still remains unknown. 

Recently, silicon X-ray optics have been developed as a promising option for next generation X-ray telescopes. 
Based on development of the semiconductor industry, abundant techniques for silicon processing along with affordable 
mono-crystalline silicon material benefits X-ray optics. Sawing and polishing techniques applied to silicon bulk material 
has been used by the NASA Goddard Space Flight Center to produce high quality silicon mirror shells,6,7 while a direct 
bonding technique has been selected by Cosine to integrate silicon wafers for large-area silicon pore optic (SPO) mirrors 
for Athena.8 

In our group, aiming at future low cost X-ray missions with 1-10” optic quality, a low cost ultrathin silicon 
lamination process is proposed. This process is based on the fact that the semiconductor industry can mass produce high 
surface quality (RMS roughness <1 nm) ultra-thin (5-100 μm @ 100 mm diameter) silicon wafers for reasonable cost. 
Figure 1 shows the sketch of the proposed process.  

The idea is to laminate thin silicon wafers layer-by-layer on a polished Si mandrel or vacuum chuck by means of 
direct bonding, which is also similar to the optical contact bonding method. When the entire thickness reaches the 
desired value, the stack would be peeled off by inserting a thin blade between the first laminated layer and the mandrel. 
Since the silicon wafers are temporarily bonded with each other, the released stack would be annealed after the peeling 
step to create permanent bonds. The stack shape would deform after the peeling-off step until the residual stress of each 
layer reaches equilibrium. Our FEA model shows this spring-back effect is predictable, and therefore, the released stack 
shape is determined by the mandrel shape and the waviness of each individual wafer. The released stack would be used 
as an X-ray telescope mirror. 
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Figure 1.  Sketch of lamination process 

In this work, we established 2D and 3D FEA models in ABAQUS to demonstrate feasibility.  A 2D model was used 
to simulate lamination on a flat mandrel. Three independent layer thicknesses including 25, 50 and 100 μm were used in 
the model to study the influence of layer thickness. An artificial sinusoidal waviness with 1 mm amplitude and random 
phase was added to each layer to demonstrate the surface improvement carried out by the lamination process. In the 3D 
model, a cylindrical mandrel has been presumed. The layer thickness is set to 50 μm and the number of layers is fixed at 
four to save calculation time. 

A major challenge of the fabrication process has been dust contamination. The silicon wafer direct 
bonding/lamination process requires chemical treatment and surface activation of the wafers to achieve good bonding 
quality. Inadequate cleaning methods and lamination procedures could leave chemical residue and dust particle 
contamination on wafer surfaces, which could lead to problems such as delamination, voids and air pockets between the 
layers after stacking and thus reduce optics quality. Our current process uses an optimized chemical cleaning step. A 
commercial wafer bonding machine has been used to stack silicon wafers after cleaning. An infrared optics setup has 
been used to inspect the bonding quality. Since our current bonding result is repeatable and defect free, the conclusion 
has been made that our chemical cleaning process is successful. A new wafer lamination tool is under development to 
produce a mirror demonstrator in the future. 

2. FEA SIMULATIONS 
We built 2D and 3D FEA models using Schott D263T glass substrates to calculate the surface deformation of the 
released stack when intrinsic waviness exists in each individual layer. In these models, calculations are achieved by two 
steps. In Step 1, each layer in an N-layer stack is modeled individually without interaction. These layers with initial 
waviness are deformed into the mandrel shape and the stress distribution of the layers are calculated sequentially. In Step 
2, the calculated stress distribution is propagated into the N-layer stacking model in which the layer surfaces are bonded 
with each other. In this step, the N-layer stacking has a perfect initial surface shape (mandrel shape). The surface 
deformation after release is calculated based on the stress relaxation of each layer. 

2.1 2D FEA Simulation 

The 2D model simulates the simplest situation of a mandrel. In this case we only consider the cross section of mirrors 
and mandrels. In this simulation substrates of diameter 200 mm and three thicknesses of 25, 50 and 100 μm are set in 
independent models to study the influence of layer thickness. Each individual layer has an initial sinusoidal waviness of 
1 mm amplitude and 200 mm period on the surface, producing 4000” initial RMS slope error. The phase of the waviness 
is randomized as is shown in Figure 2. 

In the simulation, the stress calculation in Step 1 is reversed to simplify the meshing process, which is demonstrated 
as follows. The initial glass layers are assumed to have perfectly flat surfaces. The target deformation is set to a 
sinusoidal function. The calculated stress distribution is multiplied with a negative sign to inverse the simulated 
deformation, i.e., deforming from sinusoidal shape to perfectly flat. 
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In the 2D models, all layers are meshed to 10000 rectangular elements (25 layers by 400 columns). The type of the 
meshed element is set to CPS4I in ABAQUS, which is an incompatible mode plane stress element which treats the cross 
section as a beam. 

 
Figure 2. Example of an artificial initial waviness generated on four glass layers. Glass layers have no interaction. Glass 
dimension is 200 mm diameter by 100 μm thickness. Each layer has 1 mm amplitude sinusoidal waviness with random 
phase.  

When the calculated stress is propagated into an N-layer stacking model from a flat initial surface, the deformed 
surface profile is calculated in Step 2. Since Step 1 is a random process, 1000 iterations between Step 1 and Step 2 are 
performed for a fixed number of layers. Figures 3 and 4 show examples of calculation results. 

 
Figure 3. Residual stress distribution of Sxx in a four layer stack calculated in Step 2. Note: stack is partially plotted due to 
high aspect ratio. Dimension of the plot area is 1 mm by 0.4 mm. Solid lines represent the rectangular mesh. Stress varies 
from -3.87 MPa to 3.87 MPa (from red to blue) 

Figure 5 shows the calculated RMS slope error for the number of layers varying from 1 to 16. Different colors 
represent 2D models using different layer thicknesses. The error bar on each data point is produced by 1000 iterations of 
random waviness.  

Based on the 2D results shown in Figure 5, when the initial slope error of each individual layer is fixed at 4000”, 
doubling the number of layers improves the surface by a factor of ~6. The three colors of lines are overlapped with each 
other, indicating the surface improvement resulting from the lamination process is thickness independent.  

A 2D simulation of stacking layers on a flat mandrel is useful to validate prototype fabrication process in the near 
future. From a practical point of view, a 3D simulation using a cylindrical shape is important to help develop a telescope 
mirror shell stacking process in the long term. 
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3. FABRICATION PROGRESS 
Since the lamination process requires a direct bonding method, we have recently focused on bonding silicon wafers due 
to their excellent surface quality and low RMS slope error. We selected some regular commercial wafers and measured 
the surfaces using a Shack-Hartmann metrology tool, with typical RMS slope errors of 500 μm-thick Si wafers around 
25”, while for 200 μm thick wafers this value increased to 60”. We believe the RMS slope error of ultra-thin silicon 
wafers such as 80 μm thickness could be much lower than the set value in our FEA simulation which is 4000”. 

For the direct bonding technique, four critical points need to be satisfied. First, the bonding surfaces need to be 
ultra-smooth which means the RMS roughness should below 1 nm. Second, surfaces need to be ultra-clean, i.e., free of 
dust particles and chemical contamination. Third, appropriate contacting force is necessary for the bonding. Fourth, 
temporarily bonded wafers need to be annealed to improve bonding strength. Points 1, 3 and 4 are easy to be realized. 
However, the requirement of ultra-clean surface is determined by the cleaning and lamination process which needs to be 
optimized. In our current experiment, we optimized the chemical cleaning process. We find a 1μm thick thermal oxide 
growth followed by BOE oxide strip and piranha cleaning is the most effective. The chemically cleaned wafers are 
bonded using a commercial wafer bonding machine EV620 as is shown in Figures 13a and 13b. The bonded wafers are 
inspected by an infrared optics system (see Figure 13c) thus the bonding quality could be confirmed. 

Figure 13c shows the infrared inspection system in our lab. Since silicon wafers are infrared transparent, local 
separation between stacked layers creates Newton rings in the transmission image. Thus, dust particles, air pockets and 
delamination are visible in this system as long as the delamination gap is larger than a quarter of the infrared wavelength 
which is about 300 nm. Figure 14 shows infrared images of bonded wafer pairs. All wafers shown are 100 mm in 
diameter and 400 μm thick. 

As is shown in the Figure 14 (left), dust particles, voids and delamination exist between bonded wafer pairs due to 
inadequate wafer cleaning. There are no features when the process is optimized, as is shown in the right picture which 
indicates high bonding quality. 

We also bonded three wafers by using the same process. The infrared image of this three-layer stack is shown in 
Figure 15. The excellent bonding result indicates that the stacking of ultra-thin silicon wafers on a flat mandrel is 
possible. We are planning to integrate an ultra-flat vacuum pin chuck into the bonding machine and then stack four 
layers to produce a flat demonstrator. We are also planning to build an ultra-thin wafer lamination system for a 
cylindrical mandrel. 

 
Figure 13. a and b show a commercial wafer bonding machine EV620:  a is the bottom wafer chuck, b is the top wafer 
chuck with a piston at center and c is the infrared test setup for inspecting wafer bonding quality. 
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Figure 14. Comparison between the bonding results before (left) and after (right) optimizing the chemical cleaning process. 

 
Figure 15. Infrared transmission image of a three-layer stack. 

Note: patterns on the wafer are due to the reflection from the infrared camera. 

4. CONCLUSIONS 
We demonstrated an ultra-thin Si wafer lamination method to fabricate low cost X-ray telescope mirrors with 1-10” level 
optics quality. 2D FEA simulations using a flat mandrel showed that doubling the number of layers improves the surface 
RMS slope error of the stack surface by a factor of ~6, regardless of the layer thickness. 3D FEA simulations 
demonstrated that for a cylindrical mandrel with R=100 mm, a four-layer lamination improves the local RMS slope error 
by a factor of ~4000, but with a cone angle error which might be resolved in future work. For the fabrication progress, a 
wafer cleaning process has been successfully optimized. High quality and repeatable Si wafer direct bonding results 
were achieved by a commercial bonding machine EV620. We plan to integrate an ultra-flat vacuum pin chuck into the 
bonding machine to produce a flat four-layer Si wafer stack as a demonstrator in the near future. 
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