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Thin mirrors, important for next-generation space telescopes, are difficult to accurately fabricate. One approach is
to fabricate a mirror using traditional methods, then to bend the mirror using surface stress to correct residual
height errors. We present two surface stress fields that correct any height error field in thin flat plates. For round
plates, we represent these as linear combinations of Zernike polynomials. We show that equibiaxial stress, a
common and easy-to-generate state of stress, cannot generally be used to make exact corrections. All three com-
ponents of the surface stress are needed for exact corrections. We describe a process to design an equibiaxial stress
field to make approximate corrections in round plates. Finally, we apply the three stress fields to simulate flat-
tening of a measured glass wafer with 3.64 μm root-mean-squared (RMS) height error. Using our chosen equi-
biaxial stress field, the residual error is 0.34 μm RMS. In comparison, using all three stress components, the
correction is exact and the required RMS stress is about 2.5× smaller than when using equibiaxial stress only.
We compare the deformation with a finite element model and find agreement within 10 nm RMS in all three
cases. © 2018 Optical Society of America
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1. INTRODUCTION

Thin mirrors have been used in space telescopes [1] and con-
centrated solar thermal systems [2] and are being considered for
a number of space telescope mission concepts (e.g., [3,4]).
Obtaining high optical quality of thin mirrors is a challenge
because thin mirrors deform easily during fabrication. Existing
finishing methods such as ion-beam figuring (IBF) and mag-
neto-rheological finishing (MRF) can in some cases be used
to correct surface height errors in thin mirrors, but must be
used prior to depositing reflective coatings, which can deform
thin substrates significantly. In addition, for very low spatial-
frequency errors, the height error of a mirror can be many
micrometers, which requires a long time to remove.

Stress-based correction, in which stress is applied to the sur-
face of a substrate to bend the substrate and cause a desired
deformation, is an alternative approach to correcting height er-
rors in thin mirrors, and is particularly well-suited to correcting
low spatial-frequency errors. Many passive and active ap-
proaches have been developed for applying surface stress to
cause a desired deformation in a plate or membrane [4–13].
For example, ion implantation [10] applies a static correction,
while deformable mirrors apply active correction [5,6].

The primary purpose of this paper is to answer the following
question: what stress fields could be applied to the surface to
achieve a desired deformation field? We will primarily address
this question analytically, and to simplify the problem, we limit
our analysis to thin, nearly flat plates. However, the results pre-
sented here serve as a good starting point for correcting thin
shells (curved plates).

Every method of deforming a mirror using surface stress
relies on the same basic mechanism: an internal strain is gen-
erated in a thin film on a much thicker plate, as illustrated in
Fig. 1. Since the thin film is laterally constrained by the plate,
in-plane stress develops in the film. The plate-film system
reaches static equilibrium by deforming (primarily bending).
If the stress field in the film can be controlled, then the defor-
mation field can also be controlled and could be chosen to can-
cel any surface height errors in the mirror. While in general a
stress tensor has six independent components, only the three
in-plane components of stress in the film contribute signifi-
cantly to deformation of the plate, provided the film is
thin compared to the plate thickness. Thus, the film stress
consists of two normal stress components and one shear stress
component.
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An equibiaxial stress state is where both of the in-plane nor-
mal stress components are equal and the shear stress compo-
nent is zero. An equibiaxial stress state and a general stress
state are illustrated in Fig. 2. Many methods being studied,
such as using piezoelectric films with plane electrodes [4,7,8]
and adjusting film stress during deposition [9], are typically
limited to controlling equibiaxial stress. We will show that,
when no external loads are applied to the mirror, this limits
the types of surface errors that may be exactly corrected.
Several methods are being studied that allow at least some con-
trol of all three components of the film stress. Examples include
using ion implantation [10], magnetostrictive films [11], pat-
terned films [12], or piezoelectric films with inter-digitated
electrodes [13]. Designing a system to adequately control
the three components of film stress is more complex than con-
trolling only equibiaxial stress. However, we will show that, in
general, exact corrections (within the limits of our assumptions)
are only possible if all three components of surface stress are
controlled.

The deformation of the plate-film system is proportional to
the stress in the film multiplied by the film thickness, referred
to in the present work as the integrated stress. The integrated
stress is a tensor field with three components (see Fig. 2). For a
uniform integrated stress field, a uniform change in curvatures
results and may be calculated by Stoney’s equation [14] for an
equibiaxial stress state and the equation by Suresh and Freund
[15] for a general stress state.

For non-uniform, equibiaxial, and general integrated stress
fields, much work has been published [11,16–18]. Ngo et al.
[16] considered equibiaxial stress to generate a displacement
field, which we will show is insufficient to generate an arbitrary
displacement field. Huang et al. [17] found that there is not a
unique stress field to generate an arbitrary displacement field,
and so presented stress fields for only two specific displacement
fields. We present two stress fields that generate any displace-
ment field on a flat plate. To our knowledge, a stress field

that generates an arbitrary displacement field has not been pre-
sented before.

There are also several methods of numerically calculating a
stress field that generates a desired displacement field. These
have been primarily applied to deformable mirrors. The most
common method is to calculate or measure a set of actuator
influence functions (the deformation field caused by each
actuator) and to use a pseudoinverse to minimize the least-
squared error between the target and desired surface shape
[19]. A similar method has been used for continuous equibiax-
ial stress distributions on mirrors [20]. Numerical methods,
however, do not provide as much insight as analytical
approaches.

Optical surface height errors are commonly described using
Zernike polynomials, a set of functions that are mutually
orthonormal over a unit disk [21]. We will represent the inte-
grated stress field as a linear combination of Zernike polyno-
mials, using the work of Janssen [22] and Noll [23]. We will
also describe a method to design a stress field that provides an
approximate correction, when we are restricted to using only
the equibiaxial component. This process balances the residual
surface height and the required stress magnitude.

The analysis of this work is intended to be agnostic to the
method of applying stress, and we do not address the specific
limitations of each method. In practical applications, actuators
are sometimes spatially discretized, integrated stress magnitudes
are limited, and not all stress states may be accessible. These
limitations, in addition to error sources such as metrology or
stress location and magnitude, will tend to degrade perfor-
mance compared to the results presented here. For active cor-
rection, mirrors are usually corrected after mounting, and the
mount may apply additional loads on the mirror. In many
cases, practical applications will require computational ap-
proaches to account for these details (among others), but
the stress fields presented serve as a starting point for further
optimization and provide intuition useful for further develop-
ment of the various methods of applying stress-based
correction.

2. PROBLEM FORMULATION

We consider a nearly flat, thin round plate with a significantly
thinner stressed film bonded to one surface with no external
loads. This system is illustrated in Fig. 1. The plate has a surface
height error field we�r, θ� that is small compared to the sub-
strate thickness. We would like to generate a displacement,
w�r, θ� � −we�r, θ�, to correct the height errors in the plate.

Our goal is to determine the stress field that must be applied
by the film to correct the height error. In general, the stress field
will have three components: two normal stress components and
one shear stress component. All three are assumed to be con-
trollable, without any magnitude limit. We also assume that the
film stress is continuous, not discretized (as is typical for active
correction). We make the following kinematic and geometric
assumptions to simplify this problem:

• The film thickness is small compared to the substrate
thickness �hf ≪ hs�.

• The substrate thickness is constant and small compared to
the substrate radius �hs ≪ R�.

Fig. 1. Plate-film system geometry. Cartesian and polar coordinate
system unit vectors are each shown.

Fig. 2. Representation of the plane stress state in a differential
element used in the present work.
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• The deformation and initial surface height fields are small
compared to the thickness of the substrate �w ≪ hs�.

• The film and substrate are linear elastic, isotropic, and
homogeneous.

• The film’s elastic modulus and Poisson’s ratio are the same
as those of the substrate.

A. Governing Equation

Several authors, such as Huang et al. [17] and Wang et al. [11],
have derived, in detail, the governing equations for a thin
stressed film on a round and rectangular plate, respectively.
Here we outline a simple derivation that ignores any effect of
displacement on the film stress; the strain in the film due to
substrate bending is assumed to be small compared to the origi-
nal internal strain that causes the film stress. This is a valid
assumption for thin films, and indeed we obtain the same
governing equation as Huang et al.

The net bending moments acting on the substrate are

MN
αβ � Mαβ −

hs
2
Nf

αβ, (1)

where fα, βg � fr, θg in polar coordinates, MN
αβ is the net

bending moment acting in the αβ direction,Mαβ is the internal
bending moment from the substrate, and Nf

αβ is the integrated
stress of the film in the αβ direction. For a thin plate, the
Kirchhoff–Love plate theory (e.g., Ref. [24]) provides a good
approximation of the plate deformation. As in the Kirchhoff–
Love plate theory, the midplane substrate curvatures are related
to the internal bending moments by

Mαβ � D��1 − νs�καβ � δαβνs�κrr � κθθ��, (2)

where δij �
�
1 if i � j
0 if i ≠ j is the Kronecker delta function.

The plate stiffness is D � Es�hs � hf �3∕12�1 − ν2s � as nor-
mally defined in the Kirchhoff–Love plate theory, Es is the sub-
strate elastic modulus, and νs is the substrate Poisson’s ratio. For
a thick film with elastic constants significantly larger than the
substrate,Dmay be modified as in Ref. [15]. The curvatures, in
polar coordinates, are defined as κrr � ∂2w

∂r2 , κθθ � 1
r
∂w
∂r � 1

r2
∂2w
∂θ2 ,

and κrθ � ∂
∂r

�
1
r
∂w
∂θ

�
.

The static equilibrium of a differential element of the plate-
film system results in

∂2MN
rr

∂r2
� 2

r
∂MN

rr

∂r
� 1

r2
∂2MN

θθ

∂θ2

−
1

r
∂MN

θθ

∂r
� 2

r
∂2MN

rθ

∂r∂θ
� 2

r2
∂MN

rθ

∂θ
� 0: (3)

The plate-film system has free edges as boundary conditions.
At edge �r � R�, therefore, the net radial moment MN

r is
zero [Eq. (4a)] and the net effective shear force V N

r is zero
[Eq. (4b)]:

�MN
rr �r�R � 0, (4a)

�V N
r �r�R � −

�
∂MN

rr

∂r
�MN

rr −MN
θθ

r
� 2

r
∂MN

rθ

∂θ

�
r�R

� 0:

(4b)

We represent the integrated stress field components as equi-
biaxial, antibiaxial, and shear components (Fig. 2), defined
as Ne � 1

2 �N
f
rr � Nf

θθ�, Na � 1
2 �N

f
rr − N

f
θθ�, and N s �

Nf
rθ. The equilibrium equation and boundary conditions

may be expressed as functions of the curvatures and integrated
stress components fNe�r, θ�,Na�r, θ�,N s�r, θ�g to become
the governing equation [Eq. (5a)] and boundary conditions
[Eqs. (5b) and (5c)]:

∇2Ne �
�
∂2Na

∂r2
� 3

r
∂Na

∂r
−
1

r2
∂2Na

∂θ2

�
�

�
2

r
∂2N s

∂r∂θ
� 2

r2
∂N s

∂θ

�

� 2D
hs

∇2�κrr � κθθ�, (5a)

�Ne � Na�r�R � 2D
hs

�κrr � κθθ − �1 − νs��κθθ��r�R , (5b)

�
∂Ne

∂r
� ∂Na

∂r
� 2

r
N a �

2

r
∂N s

∂θ

�
r�R

� 2D
hs

�
∂
∂r

�κrr � κθθ� � �1 − νs�
1

r
∂κrθ
∂θ

�
r�R

: (5c)

B. Limitation of Equibiaxial Stress

In the next section we present two integrated stress fields
fNe�r, θ�,Na�r, θ�,N s�r, θ�g that generate a desired displace-
ment field w�r, θ�. Before presenting these stress fields, we
show that harmonic displacement fields cannot be generated
using N e only, and therefore equibiaxial stress alone is not
sufficient to generate an arbitrary displacment field. This limi-
tation will guide the derivation of Stress Field II in the next
section.

A harmonic displacement field is defined here as a finite and
continuous displacement field that satisfies Laplace’s equation,
∇2w � κ11 � κ22 � 0, such as a pure astigmatism (or saddle
shape). The numerical curvature subscripts indicate orthogonal
directions in any coordinate frame.

We assume that there is a non-zero harmonic displacement
field. We show that if Na � N s � 0, there is no work done by
the integrated stress field, and therefore there is no displace-
ment, contradicting the non-zero displacement assumption.
As in the development of the governing equation, we ignore
the strain energy due to net in-plane forces in the substrate
since they do not contribute to small out-of-plane deforma-
tions. For a flat plate of arbitrary shape with a stressed film,
the total potential Π is the difference of the internal strain en-
ergy due to bending, Ub, and the work done by the integrated
stress field, W f :

Π � Ub −W f � 1

2

ZZ
S
�M 11κ11 �M 22κ22 � 2M 12κ12�dA

−
hs
2

ZZ
S
�Nf

11κ11 � Nf
22κ22 � 2Nf

12κ12�dA: (6)

When the system is in equilibrium, the variation of the total
potential with respect to small arbitrary displacements is zero.
We substitute the definitions of the net moments from Eq. (1)
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and the integrated stress components from Fig. 2. The work
done by external forces becomes

W f � hs
2

ZZ
S
�Ne�κ11 � κ22� � Na�κ11 − κ22� � 2N sκ12�dA:

(7)

If κ11 � κ22 � 0 and Na � N s � 0, then W f � 0. There
is no work done by external forces in this case and no
deformation.

Vdovin et al. [18] point out that this can be alleviated by
applying equibiaxial stress or forces outside of a “correction
aperture,” defined as the subset of the plate area that is used
as an optical surface. This approach would be equivalent to ap-
plying forces and moments external to the plate.

This limitation of using equibiaxial stress only to correct the
surface of flat mirrors is severe, in general. While equibiaxial
stress cannot be used to make arbitrary exact surface height cor-
rections, approximate corrections are possible and are described
in Section 5.

3. INTEGRATED STRESS FIELD SOLUTIONS

In this section we present two integrated stress fields
fNe�r, θ�,Na�r, θ�,N s�r, θ�g that generate a desired displace-
ment field w�r, θ�. Since there is one governing equation and
there are three independent variables, we do not expect there to
be a unique solution. The two solutions we present are each
useful in different situations. Stress Field I provides an exact
solution (within the assumptions outlined in Section 2) for
any flat plate shape, while Stress Field II is an exact solution
for round plates only.

Stress field I requires larger root-mean-squared (RMS) non-
equibiaxial stress components than Stress Field II. This may be
important even for stress-based correction methods that are
capable of applying non-equibiaxial stress. For example, ion im-
plantation in glass is capable of generating significantly larger
equibiaxial stress than non-equibiaxial stress [10].

Many methods of stress-based figure correction allow con-
trol of equibiaxial stress only. We showed in Section 2.B that
displacement fields described by harmonic functions cannot be
generated exactly with equibiaxial stress alone. Stress Field II is
particularly useful for making approximate corrections using
equibiaxial stress only.

In Section 4, we represent Stress Field II as a linear combi-
nation of Zernike polynomials, and we describe how to calcu-
late the Zernike spectrum of Stress Field I. In Section 5, we
describe a process to use Stress Field II to make approximate
corrections using equibiaxial stress only. In Section 6, we use
the three Stress Fields (Stress Fields I and II, and the Equibiaxial
Only stress field) to simulate flattening of a measured glass wa-
fer surface and compare the expected deformation with a finite
element model.

A. Stress Field I

One obvious solution arises by combining Eqs. (1) and (2) and
choosing the stress field components such that the net mo-
ments are zero (which also automatically satisfies the boundary
conditions), resulting in

Ne �
D�1� νs�

hs
�κrr � κθθ�,

Na �
D�1 − νs�

hs
�κrr − κθθ�,

N s �
D�1 − νs�

hs
2κrθ: (8)

We may also transform both the curvature and stress tensor
components into a Cartesian coordinate frame,

N 0
e �

D�1� νs�
hs

�κxx � κyy�,

N 0
a �

D�1 − νs�
hs

�κxx − κyy�,

N 0
s �

D�1 − νs�
hs

2κxy, (9)

where the curvatures are κxx � ∂2w
∂x2 , κyy � ∂2w

∂y2 , κxy � ∂2w
∂x∂y and

the stress components are N 0
e � 1

2 �N
f
xx � Nf

yy�, N 0
a �

1
2
�Nf

xx − N
f
yy�, N 0

s � Nf
xy.

B. Stress Field II

In Section 2.B, we established that there are deformations that
cannot be generated using equibiaxial stress only. In deriving
Stress Field II, we separate the problem into three parts.
First, we use equibiaxial stress only to attempt to correct the
surface. Next, we determine the deformation error that results
from this attempted correction. Finally, we use the non-
equibiaxial stress components to correct this residual error.

The first part of this section derives the same equibiaxial
stress as Ngo et al. [16]. However, they neither pointed out
the resulting error nor offered a correction for that error, which
we do later in this section.

We must make a distinction between the displacement field
we aim to generate,W �r, θ�, and the displacement field w�r, θ�
that results from the application of the integrated stress field.
The displacement and integrated stress field are assumed to be
functions that are separable into radial and azimuthal parts,

w�r, θ� �
X∞
m�0

wc
m�r� cos mθ� ws

m�r� sin mθ,

W �r, θ� �
X∞
m�0

W c
m�r� cos mθ�W s

m�r� sin mθ,

N i�r, θ� �
X∞
m�0

Nc
i,m�r� cos mθ� N s

i,m�r� sin mθ, (10)

where i � e, a, s. We first solve the governing equation, Eq. (5),
with Na � N s � 0 and w � W , to obtain the form of the
integrated stress field that generates the desired deformation.
The complete solution for Ne is the sum of the homogeneous
solution and a particular solution:

Ne �
2D
hs

�
∇2W −

1 − νs
2R

×
X∞
m�0

�1� δm0��m� 1�
�
r
R

�
m
�

acm cos mθ

�asm sin mθ

��
: (11)
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Here, ac,sm are constants to be determined from the boundary
conditions (the dual superscript indicates either the cosine
or sine term). The multipliers in the summation are added
for later convenience.

The boundary conditions must be satisfied for w, not W .
We must determine the deformation w that results from apply-
ing the stress field component Ne from Eq. (11). Finding the
deformation w�r, θ� requires finding all functions wc,s

m �r�. Each
term is independent and must satisfy Eq. (5). We may integrate
the stress field N c,s

e,m�r� by parts twice to find a particular
solution and add to this the C2-continuous and add the finite
solutions to the biharmonic equation (∇4w � 0),

wc,s
m �r� �

hs
2D

�
rm

Z
r

0

ρ−2m−1
�Z

ρ

0

ηm�1Nc,s
e,m�η�dη

�
dρ

�

� cc,sm rm�2 −

� R
2m b

c,s
m
�
r
R

�
m if m ≥ 2

0 if m < 2
: (12)

We add constants in front of bc,sm for later convenience. Note
that for m < 2, an rm term represents rigid-body motions.
Since this plate has no external constraints, these rigid-body
motions are undefined and we set them to zero. Using Eq. (11),
we substitute a stress component, Nc,s

e,m�r�, into Eq. (12) to
obtain

w −W � −
X∞
m�2

R
2m

�
r
R

�
m
�bcm cos mθ� bsm sin mθ�

�
X∞
m�0

rm�2

" �
ccm − 1�δm0

8Rm�1 �1 − νs�acm
�
cos mθ

��
csm − 1�δm0

8Rm�1 �1 − νs�asm
�
sin mθ

#
:

(13)

Since we choose the stress field constants ac,sm , we eliminate as
much displacement error as possible by choosing ac,sm ∕cc,sm �
8Rm�1∕��1� δm0��1 − νs��. Using Eqs. (5b) and (5c), we
may determine the constants, shown here for the cosine terms
(for the sine terms, exchange cos for sin):

acm �
�
dwc

m

dr
−
m
r
wc
m

�
r�R

� 1

π

Z
π

−π

�
dw
dr

−
m
r
w
�
cos mθdθ,

bcm �
�
dwc

m

dr
� m

r
wc
m

�
r�R

� 1

π

Z
π

−π

�
dw
dr

� m
r
w
�
cos mθdθ:

(14)

Note that, according to Eq. (12), bc,sm is undefined for m � 0, 1,
but if the average tip, tilt, and piston of a surface is zero,
Eq. (14) results in bc0 � bc,s1 � 0. The height error Δw�r, θ�
created by attempting to generate a surface height using
Eq. (11) is

Δw�r, θ� � w −W

� −
X∞
m�2

R
2m

�
r
R

�
m
�bcm cos mθ� bsm sin mθ�:

(15)

The residual height error is a harmonic displacement function
and is therefore uncorrectable using an equibiaxial stress field
(see Section 2.B). For a harmonic displacement field, Eq. (11)
results in Ne�r, θ� � 0 and w�r, θ� � 0.

The residual error in Eq. (15) may be corrected using
non-equibiaxial stress terms. We may solve the governing equa-
tion with Ne � 0 and w � Δw�r, θ� by assuming that Na and
N s are of the form N ∝ �r∕R�k cos mθ, where k is a positive
integer.

The resulting solution for the antibiaxial and shear stress
fields is

Na �
2D�1 − νs�

hsR

X∞
m�2

m − 1

2

�
r
R

�
m−2

�
bcm cos mθ

�bsm sin mθ

�
,

N s �
2D�1 − νs�

hsR

X∞
m�2

m − 1

2

�
r
R

�
m−2

�
bsm cos mθ

−bcm sin mθ

�
: (16)

The stress components of Eq. (16) are in polar coordinates,
so the directions of the stress components change withposi-
tion on the surface relative to a fixed coordinate frame. We may
represent these stress components in a Cartesian coordinate
frame. The Cartesian stress components are defined in
Section 3.A and are

N 0
a �

2D�1 − νs�
hsR

X∞
m�2

m − 1

2

�
r
R

�
m−2

�
bcm cos�m − 2�θ
�bsm sin�m − 2�θ

�
,

N 0
s �

2D�1 − νs�
hsR

X∞
m�2

m − 1

2

�
r
R

�
m−2

�
bsm cos�m − 2�θ
−bcm sin�m − 2�θ

�
:

(17)

To summarize, Stress Field II, which generates any displace-
ment field on a flat round plate, has an equibiaxial component
described by Eq. (11) and non-equibiaxial components
described by Eq. (16) or Eq. (17). If only equibiaxial stress
is applied, the resulting height error is described by Eq. (15).

Both Stress Field I and Stress Field II are exact solutions to
Eq. (5), which was formulated assuming that no external forces
and moments are applied to the substrate (for example, through
mounting points). This condition does not necessarily require
that the substrate is unmounted. Suppose a set of mounting
points each constrain w�ri, θi� � 0, ∂w�ri, θi�∕∂x � 0, and/
or ∂w�ri, θi�∕∂y � 0 for each mounting point i. The condition
of no external loads will be satisfied if the target deformation,
W �r, θ�, is chosen such that it satisfies all of the mounting
point constraints. Any constrained displacements in the plane
of the substrate may apply in-plane loads, but under the small
displacement assumption, these will not affect w.

4. ZERNIKE POLYNOMIAL REPRESENTATION

The surface height of a round plate, especially an optical
surface, is often represented using Zernike polynomials, which
are functions that form a complete, orthonormal basis set on
the unit disk. In this section, we decompose Stress Field II into
Zernike polynomials. Representing Stress Field I using Zernike
polynomials is messy, but we describe a simple process for
calculating the Zernike magnitudes of Stress Field I at the
end of this section.

The Zernike polynomials, defined in Eq. (18), each have a
radial degree n and azimuthal order m. The Zernike polyno-
mials are each a product of a radial polynomial, Rm

n �ρ�, and
a sine or cosine function. The radial coordinate is normalized
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as ρ � r∕R. We normalize the magnitude as in Noll [23]
such that the RMS value of Zm

n �ρ, θ� is 1. Many resources
(e.g., Ref. [21]) tabulate the first several orders. The Zernike
polynomials are

Zm
n �ρ,θ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�n�1�
1�δm0

s
Rm
n �ρ�

8>><
>>:
sin jmjθ if m<0&n≥ jmj,
cosmθ if m≥0&n≥ jmj,

0 otherwise,

where Rm
n �ρ��

Xn−jmj2

j�0

�−1�j�n− j�!
j!


n�jmj

2 − j
�
!


n−jmj
2 − j

�
!
ρn−2j : (18)

The Zernike polynomials are harmonic height functions for
n � jmj and non-harmonic for n > jmj. A visual representa-
tion and classification of the Zernike polynomials is shown
in Fig. 3. The harmonic functions, as shown in Section 2.B,
are not exactly correctable with equibiaxial stress alone.
Harmonic functions are also created by attempting to generate
any shape with jmj > 1 using equibiaxial stress only, according
to Eq. (15).

The displacement field we would like to generate is

w�r, θ� �
X∞
m�−∞

X∞
n�jmj�2�

ωm
n Zm

n �ρ, θ�, (19)

where ωm
n are constants. The indices on the inner sum may be

understood to be n � jmj, jmj � 2, jmj � 4,….
Using Eqs. (11), (14), and (17), we determine the stress field

that generates a displacement composed of a single Zernike
polynomial, w�r, θ� � ωm

n Zm
n �ρ, θ�. Normalizing the radial

variable and using jmj where necessary, the stress components
become

�N 0
e�mn � ωm

n
2D
hsR2

�
∇2

ρZm
n − �1� δm0��1 − νs�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jmj − 1

p
2

×
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p �
dRm

n

dρ
−
jmj
ρ

Rm
n

�
ρ�1

Zm
jmj

�
,

�N 0
a�mn � ωm

n
2D�1 − νs�

hsR2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� δm2 − δm�−2�

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jmj − 1

p
2

×
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p �
dRm

n

dρ
� jmj

ρ
Rm
n

�
ρ�1

Z sgn�m��jmj−2�
jmj−2 ,

�N 0
s �mn � −ωm

n
2D�1 − νs�

hsR2 sgn�m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� δm�−2� − δm2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jmj − 1

p
2

×
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p �
dRm

n

dρ
� jmj

ρ
Rm
n

�
ρ�1

Z −sgn�m��jmj−2�
jmj−2 : (20)

Here, sgn�m� �
�
−1 if m < 0
1 if m ≥ 0

and ∇2
ρ indicate that the ra-

dial variable has been normalized in the ∇2 operator. We may
simplify these expressions using the following two identities
adapted from Janssen [22]:

�
dRm

n

dρ
�jmj

ρ
Rm
n

�
ρ�1

�1

2
�n�jmj��n	jmj�2�,

∇2
ρZm

n �
X1

2�n−jmj−2�

k�0

��n�jmj�2k�2��n− jmj−2k�

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�n�1��jmj�2k�1�

p
�Zm

jmj�2k:

(21)

Using these expressions, we obtain the integrated stress field
required to generate a displacement field, w�r, θ� �
ωm
n Zm

n �ρ, θ�, as a function of n and m only. The stress compo-
nents are

�N 0
e�mn � ωm

n
2D
hsR2

×
X1

2�n−jmj−2�

k�0

�
1 − δk0

�1� δm0��1 − νs�
4

�
Em
n �k�Zm

jmj�2k,

�N 0
a�mn � ωm

n
2D�1 − νs�

hsR2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� δm2 − δm�−2�

q
× Em

n �k � −1�Z sgn�m��jmj−2�
jmj−2 ,

�N 0
s �mn � −ωm

n sgn�m�
2D�1 − νs�

hsR2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − δm2 � δm�−2�

q
× Em

n �k � −1�Z −sgn�m��jmj−2�
jmj−2 ,

where Em
n �k� � �n� jmj � 2k� 2��n − jmj − 2k�

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�n� 1��jmj � 2k� 1�

p
: (22)

For the arbitrary displacement field defined in Eq. (19), the
total stress field is the sum of the stress fields resulting from
Eq. (22) for each displacement field component. Each compo-
nent of the stress field may be represented in terms of the

Fig. 3. Zernike polynomials, Zm
n . The center three columns (green,

jmj ≤ 1) can be corrected with equibiaxial stress only, using Stress
Field II. The harmonic components, located on the edge (red,
jmj � n) cannot be corrected with equibiaxial stress. The remaining
components (yellow) can be eliminated with equibiaxial stress but
generate harmonic components (red) as described in Eq. (15).
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displacement magnitudes ωm
n as follows. Here, we use p and q

to distinguish between the displacement �n,m� and stress �p, q�
components. The stress components are defined as

N 0
e�r, θ� �

2D
hsR

X∞
q�−∞

X∞
p�jqj�2�

η
q
pZ

q
p ,

N 0
a�r, θ� �

2D
hsR

X∞
q�−∞

αqZ
q
jqj,

N 0
s �r, θ� �

2D
hsR

X∞
q�−∞

σqZ
q
jqj, (23)

where the constants are

η
q
p �

ffiffiffiffiffiffiffiffiffiffiffi
p� 1

p
R

�
1 − δpjqj

�1� δq0��1 − νs�
4

�

×
X∞

n��p�2��2�
ω
q
n�n� p� 2��n − p� ffiffiffiffiffiffiffiffiffiffiffi

n� 1
p

,

αq �
1 − νs
4R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1� δq0��jqj � 1�

q

×
X∞

n��jqj�2��2�
ω
sgn�q��jqj�2�
n �n� jqj � 2��n − jqj� ffiffiffiffiffiffiffiffiffiffiffi

n� 1
p

,

σq � sgn�q� 1 − νs
4R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1� δq0��jqj � 1�

q

×
X∞

n��jqj�2��2�
ω
−sgn�q��jqj�2�
n �n� jqj � 2��n − jqj� ffiffiffiffiffiffiffiffiffiffiffi

n� 1
p

:

(24)

From Eqs. (23) and (24), it is evident that each equibiaxial
stress component depends on the displacement magnitudes
only within the same column of the Zernike triangle (i.e.,
m � q). The non-equibiaxial components are only composed
of those Zernike polynomials on the edges of the Zernike tri-
angle, and they depend on the displacement magnitudes in col-
umns of azimuthal order 2 higher than the stress component.

A potential problem arises since the sums over n in Eq. (24)
go to infinity and the value of the summands increases with n.
Often, optical surfaces represented by Zernike polynomials will
have Zernike magnitudes that decrease with increasing radial
degree n. If these magnitudes do not decrease fast enough
to compensate for the increase in the value of the summands
in Eq. (24), or if the metrology instrument has significant noise
in Zernike space, it will be necessary to limit the number of
Zernike terms used to represent the surface to avoid a divergent
series for the stress field.

Representing Stress Field I as Zernike polynomials is not as
clean as for Stress Field II. However, the Zernike components
may be determined by calculating the second derivatives of each
Zernike component. Noll [23] presents the Cartesian deriva-
tives of Zernike polynomials, which may be codified as

∂Zm
n

∂x
� 1

R

X1
2�n−jmj�

k�0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�n�1��n−2k�

p

×
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�δm0 −δm�−1�
q

Zm�1
n−2k−1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−δm0�δm1

p
Zm−1

n−2k−1

�
,

∂Zm
n

∂y
� 1

R

X1
2�n−jmj�

k�0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�n�1��n−2k�

p

×
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�δm0�δm�−1�
q

Z −�m�1�
n−2k−1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−δm0 −δm1

p
Z −�m−1�

n−2k−1

�
:

(25)

The partial derivatives of a displacement field as defined in
Eq. (19) may be expressed as a linear combination of Zernike
polynomials,

∂w
∂x

�
X∞
q�−∞

X∞
p�jqj�2�

χ
q
pZ

q
p ,

∂w
∂y

�
X∞
q�−∞

X∞
p�jqj�2�

γ
q
pZ

q
p , (26)

where the constants are

χ
q
p �

X∞
n��p�1��2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�n� 1��p� 1�p
R

�
ω
q−1
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� δq1 − δq0

q

� ω
q�1
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� δq0 − δq�−1�

q �
,

γq �
X∞

n��p�1��2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�n� 1��p� 1�p
R

�
ω
−�q�1�
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� δq�−1� � δq0

q

− ω
−�q−1�
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − δq0 − δq1

q �
: (27)

The components of the second derivatives may then be calcu-
lated numerically by using Eq. (26) twice, and the stress com-
ponents for Stress Field I may be found using Eq. (9).

5. CORRECTION USING EQUIBIAXIAL STRESS

Making an exact correction of an arbitrary surface height re-
quires applying non-equibiaxial integrated stress components.
In Section 1, we listed some methods by which this may be
achieved, but it is in any case more challenging to control three
stress components than to control one. In addition, many
methods of shape correction use equibiaxial stress only. In this
section, we use the results from Section 4 to illustrate how
much we may improve the original shape error when we are
limited to using equibiaxial stress only and how much more
stress this requires. This gives us insight to allow us to design
a stress field that balances the residual height and the required
stress magnitude.

If we can only use equibiaxial stress to make an approximate
correction of a surface, we must choose at least one residual
height Zernike component for every azimuthal order m present
in the original surface height field. For example, if we use
Eq. (11) to correct a surface height, we will generate harmonic
displacement terms according to Eq. (15). We can then choose
an additional stress field to add a non-harmonic shape plus a
new harmonic displacement field that cancels the generated
harmonic displacement field. In effect, we are trading one error

Research Article Vol. 35, No. 10 / October 2018 / Journal of the Optical Society of America A 1711



for another. The problem now becomes one of choosing which
Zernike components should remain after the correction
is made.

The choice of which error components should remain will
depend on the available stress magnitude and the components
of the original shape, and we will not attempt to find the
optimal choice. In this section we will derive expressions for
the RMS residual surface height and slopes and the required
RMS equibiaxial integrated stress. In Section 6, we will use
these relations to design a stress field to approximately correct
a measured glass wafer.

Since for jmj < 2 we make exact corrections using only
equibiaxial stress, we will only consider Zernike displacement
terms with jmj ≥ 2 in this section. We attempt to generate a
displacement field composed of a single Zernike polynomial,
w0 � ωm

n Zm
n . The error from applying Eq. (11) is Δw0,

Δw0�r, θ� � −ωm
n
�n� jmj��n − jmj � 2�

4jmj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 1

jmj � 1

s
Zm

jmj:

(28)

To remove the residual height Δw0, we add another displace-
ment, w1 � ωm

jmj�2jZ
m
jmj�2j, that results in a displacement

Δw1 � −Δw0. We designate j as the radial degree offset. The
residual displacement is

w1�r,θ� � −ωm
n
�n�jmj��n − jmj� 2�

4�jmj� j��j� 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 1

jmj� 2j� 1

s
Zm

jmj�2j :

(29)

The equibiaxial stress field that results in deformation w1�r, θ�
may be found using Eq. (22). By the above process, we trade
the original shape w0 for the new shape w1. We will compare
the RMS values of the residual height and slopes for the original
and new shapes. We designate RMS quantites with angle brack-
ets h…i. The RMS height of the new shape, hw1i, may be
compared with that of the original shape, hw0i,

hw1i
hw0i

� �n� jmj��n − jmj � 2�
4�jmj � j��j� 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 1

jmj � 2j� 1

s
: (30)

The x- and y-partial derivatives of a Zernike polynomial are
given by Eq. (25), and the RMS slopes may be found by cal-
culating the root-sum-of-squares (RSS) of the magnitudes of
each component in the derivative expression. For a surface
composed of multiple Zernike components, the RSS of the
constants of Eq. (27) is equal to the RMS slope in that
direction.

Using Eqs. (25), (28), and (29), we calculate the RMS slopes
for a choice of radial degree offset j. The RMS slopes in the x
and y directions are equal for jmj ≥ 2, and we designate the
RMS slope of the new shape as hs1i and that of the original
shape as hs0i. The ratio is

hs1i
hs0i

� �n� jmj��n − jmj � 2�
2

ffiffiffi
2

p �jmj � j��j� 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�j� 1��jmj � j� − jmj

n2 � 2n − jmj2

s
:

(31)

Equations (30) and (31) indicate that as j increases, both the
RMS height and RMS slope errors decrease. We may therefore

trade one Zernike component for a higher-degree component
to improve these errors. The RMS slope error improves more
slowly than the height error. The required RMS equibiaxial
stress also increases. These facts are illustrated in Fig. 4 for a
particular displacement Zernike term. The results are similar
for other Zernike terms.

6. SIMULATED CORRECTION OF A WAFER

We apply the stress fields in Section 4 and the approximate
corrections from Section 5 to simulate the exact and approxi-
mate correction (flattening) of a measured glass wafer. We also
verify these results using ADINA, a commercial finite element
(FE) package. The wafer was measured mounted vertically, us-
ing a Shack–Hartmann surface metrology system [25] and a
low-stress wafer mounting frame [26]. The measured surface
slopes of the wafer are fit to derivatives of Zernike polynomials
to obtain the Zernike spectrum of the surface. The surface
height map is shown in Fig. 5. The RMS height is 3.64 μm,
and the RMS x and y slopes are 10.6 and 9.5 μrad, respectively.

For the simulations in this section, the wafer radius is
50 mm, its thickness is 0.50 mm, and the film thickness is
10 μm. The elastic modulus is 73.6 GPa and the Poisson’s ratio
is 0.23 for both the substrate and film. The wafer is constrained
kinematically so no external loads are applied through the
constraints.

We calculate stress fields using each of the three methods:
Stress Field I, Stress Field II, and Equibiaxial Only. We apply
our analytical stress fields to a finite element model, which is
composed of two layers of nine-node shell elements (i.e., quad-
ratic displacement interpolation functions). The top layer is
10 μm thick, and the bottom layer is 500 μm thick. We assume
small deformations, small strains, and linear elastic isotropic
material properties. We apply a stress field to the top layer.
The mesh, composed of 9876 nodes per layer, is shown in

Fig. 4. Improvement in RMS surface height and slope and increase
in RMS stress, resulting from trading the original displacement (which
is composed of a single Zernike term withm � −3, n � 5) for Zernike
terms of different radial degrees. This demonstrates one method of
designing an equibiaxial stress field to make an approximate correc-
tion. Here, the case j � 1 involves no applied stress.
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Fig. 6. In both the approximate and exact correction cases, the
finite element model and analytical model show excellent agree-
ment, as summarized in Table 1. The results do not appreciably
change as a result of using a half- or double-density mesh.

For exact correction, we apply the Stress Field II compo-
nents calculated using Eqs. (23) and (24), and the required
stress field is shown in Fig. 7. We also use Eqs. (9) and (26)
to apply Stress Field I. In both cases, the RMS difference be-
tween the analytical and FE models is<1 nm. The RMS lateral
displacements are about 50 nm.

Fig. 5. Measured glass wafer surface. (a) The surface height includ-
ing Zernike terms up to n=7, and (b) the Zernike spectrum, which is
dominated by astigmatism.

Fig. 6. Finite element mesh used for simulations. This model is
composed of two layers of nine-node shell elements bonded together,
and an initial stress is applied to the top layer.

Table 1. Residual Height Errors and Stress Field
Components Using Three Methodsa

RMS Height [nm] RMS Stress [N/m]

Method Analytic FE N e N a N s

Stress Field I 0.0 0.0 30.2 18.4 10.0
Stress Field II 0.0 0.8 38.9 14.6 8.0
Equibiaxial only 342.6 342.7 108.4 0.0 0.0

aThe original RMS height was 3.64 μm.
Fig. 7. Integrated stress field, as calculated using Stress Field II, that
would exactly flatten the measured glass wafer shown in Figure 5.
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For approximate correction using only equibiaxial stress, we
know from Section 5 that choosing the residual height error to
be higher-order Zernike terms leads to better correction but
higher stress requirements. Figure 8 shows this trade-off for this
glass surface for a variety of radial degree offset values. For com-
parison, in Fig. 8 we have also included the RMS values of the
stress components required by the general stress field to achieve
exact correction.

We arbitrarily chose a radial degree offset value of j � 2 and
plot the required equibiaxial stress component and correspond-
ing residual height error in Fig. 9. The RMS point-by-point
difference between the analytical and numerical model is
8 nm, <0.25% of the total deformation. The RMS residual
height error for this radial degree offset value is 343 nm. The
RMS lateral displacements are about 50 nm.

Since the deformation is related to substrate thickness,
thickness variation could limit accurate correction. We use
the finite element model to evaluate the effects of substrate
thickness variation by applying Stress Field II to the above sub-
strate but with spatially varying thickness. The target deforma-
tion is as in Fig. 5. We describe the small thickness variation

Δhs�r, θ� ≪ hs by a Zernike polynomial with maximum value
�1 μm. To simplify the model definition, the film is initially
flat, although in reality it would conform to the substrate.
For uniform Δhs, under this simplification, the expected RMS

Fig. 8. Increase in required equibiaxial stress (top) and reduction in
RMS height and slope errors (bottom) resulting from choosing
residual height terms of varying radial degree offset j, as described
in Section 5. For comparison, the stress magnitudes calculated using
Stress Field II for a full correction are also included.

Fig. 9. Equibiaxial stress field, residual height map, and residual
slope map in the y direction for j � 2. The slope map in the x direc-
tion is similar to the slope map in the y direction but rotated 90°, and
the RMS value is 4.3 μrad.
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height error is hw −W i ≈ 3Δhs∕hs. The height error resulting
from thickness variation is summarized in Table 2. The RMS
height error also varies approximately linearly with the thick-
ness variation magnitude, up to at least 50× larger than those in
Table 2, and we do not find a significant difference between
using Stress Field I and Stress Field II.

7. CONCLUSIONS

For any stress-based figure correction approach being consid-
ered, it is important to understand the trade-offs of controlling
all three components of surface stress compared to controlling
equibiaxial stress only. Controlling one component of stress is
of course much simpler than controlling three components. For
a flat plate of any shape, however, we have shown that by con-
trolling equibiaxial stress only, we cannot provide an exact cor-
rection in general.

We presented two stress fields in Section 3 that may be used
to correct an arbitrary surface height error. Stress Field I may be
applied to flat plates of any shape. Stress Field II is applicable
to round flat plates only, but requires smaller RMS non-
equibiaxial stress components than Stress Field I. Stress
Field II is compactly represented as a linear combination of
Zernike polynomials in Section 4. These two stress fields are
not the only solutions, as different choices of constants in
Eq. (11) will lead to additional solutions.

Stress Field II may also be used to design a stress field to
make an approximate correction using equibiaxial stress only,
as described in Section 5. Our approach to approximate cor-
rection using only equibiaxial stress is not the only approach,
since one may consider having any combination of displace-
ment terms as residual error. The approach we describe illus-
trates the trade-offs necessary when using equibiaxial
stress only.

In practical applications, many complications arise, such as
those listed in Section 1. While the stress fields presented here
are solutions to an idealized model, they are a useful starting
point for further optimization or to account for additional de-
tails. One major difference between the idealized model here
and most telescope mirrors, for example, is that most telescope
mirrors are not flat. Applying the stress fields here to curved
plates does not result in a perfect correction. Forthcoming work
will address this and other effects.
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