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Astronomical imaging with micro-arcsecond (µas) angular resolution could enable breakthrough scientific discov-
eries. Previously proposedµas x-ray imager designs have been interferometers with limited effective collecting area.
Here we describe x-ray telescopes achieving diffraction-limited performance over a wide energy band with large
effective area, employing a nested-shell architecture with grazing-incidence mirrors, while matching the optical
path lengths between all shells. We present two compact nested-shell Wolter Type 2 grazing-incidence telescope
designs for diffraction-limited x-ray imaging: a micro-arcsecond telescope design with 14 µas angular resolution
and 2.9 m2 of effective area at 5 keV photon energy (λ= 0.25 nm), and a smaller milli-arcsecond telescope design
with 525 µas resolution and 645 cm2 effective area at 1 keV (λ= 1.24 nm). We describe how to match the optical
path lengths between all shells in a compact mirror assembly and investigate chromatic and off-axis aberrations.
Chromatic aberration results from total external reflection off of mirror surfaces, and we greatly mitigate its effects
by slightly adjusting the path lengths in each mirror shell. The mirror surface height error and alignment require-
ments for diffraction-limited performance are challenging but arguably achievable in the coming decades. Because
the focal ratio for a diffraction-limited x-ray telescope is extremely large ( f/D∼ 105), the only important off-axis
aberration is curvature of field, so a 1 arc sec field of view is feasible with a flat detector. The detector must fly in
formation with the mirror assembly, but relative positioning tolerances are on the order of 1 m over a distance of
some tens to hundreds of kilometers. Although there are many challenges to achieving diffraction-limited x-ray
imaging, we did not find any fundamental barriers. © 2020 Optical Society of America

https://doi.org/10.1364/AO.392479

1. INTRODUCTION

Astronomical imaging with extremely high angular resolution,
in the milli-arcsecond (mas) to micro-arcsecond (µas) range,
could greatly enhance our understanding of the universe. The
Event Horizon Telescope, an Earth-sized interferometer observ-
ing at a wavelength of λ= 1.3 mm, recently imaged the shadow
due to the event horizon of the supermassive black hole in the
active galaxy M87 with angular resolution around 25 µas [1].
Imaging with such high resolution in other bands would be
valuable but has not yet been achieved. High-resolution x-ray
imaging, in particular, is expected to enable significant advances
in astronomy.

With 0.5 arc sec imaging resolution, the Chandra X-ray
Observatory has been an extremely valuable resource for astron-
omy for the past 20 years [2]. Some examples of the scientific
return from Chandra’s imaging capability include resolving
nearly all of the cosmic x-ray background into point sources
(e.g., [3]), finding microlensing due to stars in gravitationally
lensed active galaxies to examine the dark matter fraction in the

intervening elliptical galaxy [4], and observing jets from galac-
tic x-ray binaries [5] and high redshift quasars [6]. At higher
resolution, we can expect to continue studies such as these; in
particular, quasar jets show structure on all scales down to the
event horizon in the radio band [7].

At an imaging resolution of order milli-arcseconds, for
example, dark matter clumping that is expected based on many
cosmological simulations can be tested directly by examining
the “speckles” produced in gravitational lenses and, simultane-
ously, the stellar masses of the lensing galaxies can be measured
due to the extremely compact sizes of the x-ray emission regions
of active galactic nuclei (AGN). Currently, x-ray light curves
are used for these studies (e.g., [8]), but direct imaging of the
speckles will provide the distribution of the masses of dark
matter sub-halos needed for testing models of the evolution
of cosmic structure. At the µas scale, the lensing due to indi-
vidual stars will discern the mass fraction in stars [9]. There
are a handful of gravitationally lensed AGN with x-ray fluxes
>5× 10−13 erg/cm2/s [10], which would provide >100
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counts in each of 100 speckles in 105 s for an instrument with an
effective area of 600 cm2.

The structure of AGN x-ray emission regions themselves is in
doubt. There is emission from the corona, which may be either
a hot region above the accretion disk that should be approxi-
mately spherically symmetric or a relativistic jet that is aligned
with the black hole spin axis. Both variability and reverberation
mapping show that the x-ray emission regions are less than 100
times the size of the event horizon [11,12]. To resolve the x-ray
emission regions requires angular resolution of order µas but
may be the only way to settle this question of geometry and
physical origin. There are a few hundred AGN with x-ray fluxes
>10−11 erg/cm2/s [13] that would yield >100 counts in each
of 100 resolution elements in observations of 104 s for an instru-
ment with an effective area of 300 cm2, allowing for variability
studies on a Keplerian time scale. Many additional scientific
objectives of aµas x-ray imager have been suggested [14].

For µas imaging, space-based interferometry has been
proposed in the infrared, visible, and ultraviolet bands with
kilometer baselines [15,16] and in the x-ray band with meter
baselines [14,17]. Refractive and diffractive approaches have
also been proposed for high-resolution x-ray astronomy [18,19].
In this paper, we present optical designs for diffraction-limited
reflective x-ray telescopes that employ a nested-shell architecture
and can achieve a large effective area with mas to µas angular
resolution in a compact optical assembly.

X-rays only efficiently reflect off of most surfaces near grazing
incidence, so x-ray telescopes typically use nested grazing-
incidence mirror shells (Fig. 1) to achieve large light-gathering
power [20,21]. Diffraction-limited imaging or interferometry
requires matching optical path lengths throughout the telescope
to a fraction of a wavelength, which in turn requires appropriate
optical design as well as accurate mirror surfaces and alignment.
All previous x-ray interferometer concepts [14,17,19] have been
limited in light-gathering power because the optical design led
to path lengths that were only matched for mirrors contained
in a single shell. With a single shell, the telescope aperture is
a very thin annulus, and the point-spread function (PSF) has
diffraction rings with significant optical power [22]. Matching
path lengths of different shells in an x-ray imaging system has
been described qualitatively [17], but quantitative methods of
specifying the geometric parameters of nested-shell telescopes
have not been presented.

In this work, we describe a methodology for designing
diffraction-limited nested-shell grazing-incidence x-ray tele-
scopes. Furthermore, we estimate the imaging characteristics of
such telescopes, including resolution, effective area, chromatic
aberration, and off-axis aberrations. For this analysis, we assume
perfect mirror surfaces but briefly analyze wavefront errors
resulting from surface and alignment errors. We also consider
pointing knowledge and control requirements. We present two
representative Wolter Type 2 optical designs for diffraction-
limited x-ray telescopes, a µas telescope design (Fig. 1) with
14 µas angular resolution and 2.9 cm2 of effective area at 5 keV
photon energy (λ= 0.25 nm) and a smaller mas telescope design
with 525 µas resolution and 645 cm2 effective area at 1 keV
(λ= 1.24 nm). Both designs feature wide diffraction-limited
fields of view, large depths of focus, and chromatic aberration
reduced below the diffraction limit up to 10 keV.

Fig. 1. Diffraction-limited nested-shell Wolter Type 2 grazing-
incidence x-ray telescope, with approximate dimensions shown for
the µas telescope design. The mirror assembly and detector are on
separate spacecraft flying in formation some hundreds of kilometers
apart. The mirror assembly contains curved primary (P) and secondary
(S) mirror shells. The inset of the detector spacecraft illustrates that the
PSF should be similar in size to the detector spatial resolution p .

Fabricating, aligning, and mounting mirrors to achieve
diffraction-limited imaging at sub-nanometer wavelengths is a
considerable challenge. However, the tightest surface accuracy
and alignment requirements for diffraction-limited soft x-ray
mirrors are of order 1 nm, which is larger than the allowable path
length errors (which must be a small fraction of the wavelength)
due to small graze angles [23]. The surface accuracy of thin
silicon x-ray mirrors is already approaching this level [24], and
there are examples of non-x-ray-telescope optics exceeding this
accuracy [25,26].

There are a number of challenges to µas imaging in gen-
eral and diffraction-limited x-ray imaging in particular. In
Section 2, we briefly discuss the long focal lengths required for
µas imaging, then we describe a quantitative design process for
diffraction-limited nested-shell x-ray telescopes, and we present
the geometry of the two representative designs. In Section 3, we
estimate the optical performance of the µas and mas telescope
designs. In Section 4, we address the important issue of chro-
matic aberration, which arises because of reflection at angles
below the critical angle for total external reflection, and which
we mitigate by slightly adjusting the path lengths for each shell.
In Section 5, we consider off-axis aberrations and related issues
of pointing knowledge and control.
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2. TELESCOPE DESIGN

A. General Considerations

Micro-arcsecond imaging, regardless of wavelength, requires
extremely long focal lengths to realize a practical focal spot size
dPSF = f θPSF, where θPSF is the angular diameter of the PSF
(i.e., the angular resolution, see Section 3) and f is the focal
length of the telescope. Furthermore, a diffraction-limited
telescope requires a focal ratio of approximately f /D> p/λ,
where p is the detector spatial resolution, λ is the photon wave-
length, and D is the telescope aperture diameter (this assumes
dPSF ∼ λ f /D> p). Diffraction-limited x-ray imaging at
λ= 0.25 nm and p = 25 µm requires f /D∼ 105, and achiev-
ing roughly 20µas angular resolution requires f ∼ 260 km and
D∼ 3 m. The mirror assembly can be compact and launched
as a pre-assembled structure, in contrast to longer-wavelength
(e.g., visible-band) µas telescope designs that would require
much larger-diameter structures. However, as with any µas
telescope, the focal length must be long, likely requiring two
spacecraft flying in formation hundreds of kilometers apart, one
containing the mirror assembly and the other containing the
detector (Fig. 1).

The positive and negative implications of using a detector
with higher spatial resolution, which would enable a smaller
focal length, are discussed in Section 5. Unless the mirror assem-
bly is axially stretched over tens of meters (as in [14]), or huge
improvements in detector spatial resolution (by 4–5 orders of
magnitude compared to the state of the art) can be realized,
formation flying will be necessary. The GRACE-FO mission
has demonstrated formation flying over similar-length scales
[27], and we show in Section 5 that the required relative position
control tolerances of the two spacecraft for an x-ray telescope are
on the order of a meter.

Micro-arcsecond imaging at any wavelength requires knowl-
edge of the telescope pointing toµas tolerances, but wavelengths
longer than x rays (e.g., visible) may require pointing control
with µas tolerances as well. The relative position and orienta-
tion requirements of the two spacecraft are less stringent for
an x-ray telescope, for two reasons. First, the extremely large
focal ratio results in minimal geometric aberration effects and
a large depth of focus (DOF). Second, the x-ray photons have
sufficiently high energy and low flux to be individually counted
and time tagged. Images can then be re-constructed from the
photon counts as long as the pointing knowledge is better than
the angular resolution. Therefore, x-ray telescopes require µas
pointing knowledge but much looser control, as discussed in
Section 5. High-precision astrometry to better than 50 µas has
been achieved by Gaia [28], and Gravity Probe B has demon-
strated pointing knowledge drift on the order of 100 µas/year
using a telescope with only a 144 mm diameter aperture [29].
Other potential solutions to pointing knowledge have been
proposed [17].

X rays efficiently reflect off of most surfaces only near grazing
incidence, and there are four types of grazing-incidence tele-
scopes [30,31]. Saha [32] presented a useful comparison of these
telescopes. They use two subsequent grazing-incidence mirror
shells, called the primary and secondary mirrors, that are each
nearly conical. As each shell has a small geometric collecting
area defined by a thin annulus, multiple confocal shells are

Fig. 2. Cross section of two shells of a Type 2 grazing-incidence
telescope (each shell comprises a primary and a secondary mirror),
with the geometric parameters labeled for the outer shell only. The
mirrors are axisymmetric about the z axis. Matching path lengths
between shells requires matching the lengthP = A+ B +C , which is
referenced to a common planar wavefront.

typically nested to increase effective area and thereby improve
telescope sensitivity. Achieving diffraction-limited performance
requires matching the optical path lengths for all shells to within
a fraction of a wavelength. Most existing x-ray telescopes are
of the Type 1 design (e.g., [33–35]), whereas proposed x-ray
interferometers have been akin to the Type 2 [14,17] or Type
4 [36] designs but using flat mirror segments to approximate
cones. We present a Type 2 telescope (illustrated in Fig. 2) that
uses nested shells comprising curved mirrors.

The commonly used Type 1 design employs two concave
mirror shells and is impractical for µas imaging. Even if the
path lengths for all shells in a Type 1 telescope were matched,
for all shells to be confocal, the graze angle α would need to
approximately equal D/8 f . For a µas-imaging Type 1 x-ray
telescope where f /D∼ 105, the graze angles would need to be
of order 1 µrad, and each mirror shell would only contribute a
micron-wide annulus. In contrast to the Type 1 design, the Type
2, 3, and 4 designs allow a long focal length that is largely inde-
pendent of graze angle. The Type 2 telescope is more compact
than Types 3 or 4 [32], so we believe a Type 2 telescope is ideal
for a µas-imaging telescope. Next, we analyze the geometric
parameters of nested-shell Type 2 telescopes in which the path
lengths for all shells are equal.

B. Type 2 Telescope Optical Design

In this section, we determine the geometric parameters for
nested shells that result in a diffraction-limited telescope, in
which all rays passing through the telescope to the focus have
the same path length, in accordance with Fermat’s principle.
Six geometric parameters (Fig. 2) define the geometry of a shell:
the focal length f , the radius of the leading edge of the primary
mirror rp, the radius of the leading edge of the secondary mirror
r s, the axial gap between the leading edges of the primary and
secondary mirrors 1z, the telescope length L , and the graze
angle at the primary mirror α. In principle, all of these parame-
ters could vary by shell, but we keep f constant so that the shells
are confocal. In Section 2.D, we present a design in which L
is constant for all shells. For each shell, one parameter must be
chosen as an independent variable, and we use rp as a convenient
choice.
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For the telescope to be diffraction limited, rays through all
shells must have the same path length from a common planar
wavefront (Fig. 2). The length s = B +C can be considered
as the length of a straight line (not shown in Fig. 2) connecting
the leading edge of the primary mirror to the focus, plus a delay
resulting from a jog in this line. The length of this line increases
with shell radius, so matching the path lengths for all shells
requires adding a delay that decreases with shell radius. This
delay can be visualized as a jog in a line drawn from the primary
mirror to the focal plane. The common planar wavefront can be
anywhere as long as it is common to all shells. The path length
to be equalized is P = A+ B +C as drawn in Fig. 2, where
A is the distance between the common planar wavefront and
the entrance aperture of a shell, and s = B +C is the path
length from the entrance aperture of that shell to the focal
plane. Because the focal plane is common to all shells, we choose
A=−L for each shell, and thus we must make the quantity
P = s − L equal for all shells in achieve diffraction-limited
resolution.

Following Saha’s derivation of the generalized surface
equations and the path length s [32], here we establish three
equations that must be satisfied by each shell to match all path
lengths P , using the law of reflection, Fermat’s principle, the
Abbe–Saha sine condition, and an on-axis ray traced from
the entrance aperture to the focal plane. The Abbe–Saha sine
condition is the Abbe sine condition generalized to account for
different optical prescriptions using the parameter N, including
parabola-hyperbola (PH, N = 0), Wolter–Schwarzschild (WS,
N = 1), and higher-order prescriptions (N > 1). Once the
parameters for a shell are determined, the surface equations can
be calculated as in Ref. [32]. The Abbe–Saha sine condition is

rp =
2 f tan

(
α f /2

)
1+ N tan2

(
α f /2

) , (1)

where αf is the angle that a ray makes with the optical axis
after reflecting off of the leading edge of the secondary mir-
ror, as shown in Fig. 2. Tracing a ray through the system
while using the sine condition, which can be re-arranged as
tan(α f /2)= rp/2 f ′, where 2 f ′ = f + ( f 2

− Nr 2
p)

1/2, leads
to expressions for the path length, telescope length, and graze
angle:

s =
√
1z2 +

(
rp − r s

)2
+

r s

rp
f ′ +

r s rp

4 f ′
, (2)

L =1z+
r s

rp
f ′ −

r s rp

4 f ′
, (3)

tan 2α =
rp − r s

1z
. (4)

These three equations must be satisfied for each shell, with
s − L and f equal for all shells. Choosing rp as an independent
variable, these three equations contain a total of four parame-
ters that may vary by shell: r s , 1z, L , and α. There is one free
parameter, allowing some design freedom, after matching the
path length and focal length for all shells in a telescope. Rather
than specifying s − L directly, we define the geometry of one
shell, called the reference shell , by defining any three of the four

parameters for that shell. We choose to define r ∗p , 1z∗, and
α∗, where the asterisk superscript indicates parameters of the
reference shell. The remaining three parameters (s ∗, L∗, r ∗s ) can
be calculated from Eqs. (2)–(4).

Once s − L is determined by specifying the geometry of the
reference shell, and one free parameter is eliminated by specify-
ing one parameter or one relationship between parameters for
each shell, Eqs. (2)–(4) can be solved symbolically and evalu-
ated numerically. For example, if L is specified for each shell
(e.g., L = L∗), then Eqs. (2) and (3) can be solved for r s and1z:

r s = rp
2 f ′

(
(s − L) (s + L)− r 2

p

)
4 f ′

(
f ′ (s − L)− r 2

p

)
+ (s + L) r 2

p

, (5)

1z= L −
2 f ′2

(
(s − L) (s + L)− r 2

p

)
4 f ′

(
f ′ (s − L)− r 2

p

)
+ (s + L) r 2

p

(
1−

r 2
p

4 f ′2

)
.

(6)

Because we require computation of s − L with � λ/14
accuracy (Maréchal criterion), and Eqs. (5) and (6) contain
products and sums of large (e.g., f ′) and small (e.g., s − L)
terms, numerical precision may be an important consideration
in some cases. However, using Eqs. (2)–(6) for the example
designs in this paper, double precision computation results in
equal path lengths to less than 0.1 picometer, or<λ/1000.

C. Approximate Design Parameters

Although an exact solution is necessary for accurate optical
designs, approximate solutions provide intuition about the
relationship between parameters. For rp � f tan 2α < f and
α� 1, we may approximate Eqs. (2) and (3) using a first-order
Taylor series as

s − L ≈
1

2
1z tan22α +

r 2
p

2 f
, (7)

f − L ≈
f1z tan 2α

rp
. (8)

Typically, the path length calculated from Eq. (7) is microns dif-
ferent from that calculated from Eq. (2), but these equations are
useful for understanding the trends of the geometric parameters.

Using Eqs. (4), (7), and (8), we analytically determine
the four parameters for each shell with entrance radius rp .
There are four cases considered here, each where a different
parameter is constant throughout the telescope. The resulting
equations are shown in Table 1. To condense the table, we intro-
duce the parameter χ = (r 2

p,max − r 2
p )/(r

2
p,max − r ∗2p ), where

r p,max =

√
r ∗2p + f1z∗tan22α∗ is approximately the maxi-

mum radius at which the path length of a shell can be matched to
that of the reference shell [the denominators of Eqs. (5) and (6)
are nearly zero when rp = r p,max]. χ is a measure of how close rp

is to r p,max, and whenχ ≤ 0, it is no longer possible to match the
path length to that of the reference shell.

Cases 1 and 2 are illustrated in Fig. 3, which shows several
possible positions of the leading edges of the primary and sec-
ondary mirrors that change the path length while keeping L or
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Table 1. Approximate Expressions for the Four
Geometric Parameters, for Four Different Cases

a

Quantity
Case 1
L = L∗

Case 2
α = α∗

Case 3
1z=1z∗

Case 4
rp − rs =

r∗p − r∗s
f−L

f−L∗ = 1
r ∗p
rp
χ

r ∗p
rp
χ 1/2 r ∗p

rp

α

α∗
=

r ∗p
rp
χ 1 χ 1/2 χ

1z
1z∗ = (

rp
r ∗p
)2χ−1 χ 1 χ−1

rp−r s
r ∗p −r ∗s
=

r p
r ∗p

χ χ1/2 1

aHere χ = (r 2
p,max − r 2

p)/(r
2
p,max − r ∗2p ), where r p,max =

√
r ∗2p + f1z∗tan22α∗.

Fig. 3. Illustration of varying the path length of a mirror shell while
maintaining constant (a) telescope length or (b) graze angle. The circles
indicate possible positions of the leading edge of the primary and sec-
ondary mirrors.

α constant. The dashed lines in Fig. 3 are defined by rp and α f ,
and α f is related to f by Eq. (1), so once rp and f are chosen,
the path length can only be adjusted by sliding the primary
and secondary mirror positions along them (i.e., modifying
ray segment B in Fig. 2). As discussed in Section 2.B, to match
the path lengths for multiple shells, a delay must be added
to a line going from the primary mirror to the focus, and the
delay must get smaller as the shell radius increases. For Case 1
(where L is fixed), the secondary mirror position must move
along the sloped dashed line in Fig. 3(a), which changes the
radial gap rp − r s , the axial gap 1z, and the graze angle α. For
larger-diameter shells, the path must get straighter to reduce the
delay.

Although Case 1 allows a constant telescope length L , the
graze angle α and axial gap1z must vary as a function of radius.
Varying the graze angle introduces chromatic aberration, which
we discuss in Section 4. Varying the axial gap is problematic if1
becomes large enough that it would be difficult to maintain suf-
ficient alignment stability between the primary and secondary
mirrors. Because for Case 11z varies roughly quadratically with
shell radius, this effectively limits the range of shell radii that a
diffraction-limited x-ray telescope can practically contain.

For Case 2 [where α is fixed, Fig. 3(b)], the primary and
secondary mirrors are moved along the axial direction together

Fig. 4. Nesting of shells in a Type 2 telescope.

such that the path between them remains at the same angle.
The distance from the primary mirror to the focal plane, L ,
changes. For a large focal ratio f /rp ∼ 105, the two dashed lines
in Fig. 3(b) are nearly parallel, and the required change in L
to effect a small change in path length can be very large. The
change in length is L − L∗ ≈ f

r ∗p
1z∗ tan 2α∗(1− f−L

f−L∗ ). If the

focal ratio is large and if the quantity ( f − L)/( f − L∗) varies
with radius (as in Cases 2–4), then the change in length can be
quite large, often hundreds of meters. Cases 2–4 therefore seem
impractical for a telescope with extremely long focal length.

There are other approaches we could take with respect to the
free parameter. One example that may enable a large range of
shell radii would be to specify two (or more) values of L , one
for a set of large-radius shells and another for a set of small-
radius shells. The two sets of shells would be confocal and have
the same path length but would be axially displaced by many
meters. However, the range of graze angles and axial gaps could
be kept smaller in both sets than if they had the same L .

D. Mirror Geometry for mas and µas Telescope
Designs

Here we use Eqs. (4)–(6) to determine the geometry that
matches path lengths for multiple shells in two telescope
designs: aµas telescope design with shell diameters ranging from
2 to 5 m, and a mas telescope design with shell diameters ranging
from 220 to 600 mm. For these designs, we prescribe L = L∗

(Case 1 in Table 1). The innermost shell is chosen as the refer-
ence shell, and we add shells outward one at a time, choosing
1rp = hm + Lm tan αp (where hm and Lm are the thickness
and length of the mirrors, respectively) to avoid blocking on-axis
x-rays as shown in Fig. 4. The geometric parameters of these
designs are summarized in Table 2, and both mirror layouts are
shown in Fig. 5. In this section, we consider only the geometry
of these telescope designs and evaluate various aspects of the
optical performance in Sections 3–5.

We limited the diameter of the outermost shell to 5 m, a limit
that would depend on future launch vehicles. The radii of the
outermost and innermost shells affect both angular resolution
and effective area. The outermost radius primarily affects the
width of the central lobe of the PSF, whereas the innermost
radius affects the fractional power in that central lobe. It is desir-
able to have a large difference in radius between the inner- and
outermost shells to maximize power in the core of the PSF, but
this also significantly affects the axial gap 1z and the range of
graze angles in the telescope. The axial gap follows a quadratic
relationship with radius, so if the axial gap is too large, alignment
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Table 2. Geometric Parameters of Two Telescope
Designs

b

Parameter µas Telescope mas Telescope

Focal length, f [km] 300 25
Physical length, L [km] 299.0 24.21
Shell radius, rp [m] 1

a
–2.5 0.11

a
–0.30

Graze angle,α0 [deg.] 1.0
a
–0.34 1.0

a
–0.36

Axial gap,1z [mm] 100
a
–731 100

a
–766

Radial gap, rp − r s [mm] 3.5
a
–8.7 3.5

a
–9.5

Mirror length [mm] 100 100
Mirror thickness [mm] 0.5 0.5
Number of shells 1033 131
Mirror axial sag [nm PV] 382

a
–18 3558

a
–64

Total surface area [m2] 2400 35
Total mirror mass [kg] 2800 42

aParameter of the reference shell.
bNumber ranges span from innermost (reference) to outermost shells.

Fig. 5. Cross section of the mirror assembly for the µas telescope
and mas telescope designs, approximately to scale. For clarity, only
every 20th mirror is shown. X rays enter from the top, reflect off of the
inside of primary mirrors (P), off of the outside of secondary mirrors
(S), then to the focal plane (300 km away for µas, 25 km away for mas
telescope designs).

stability between the primary and secondary mirrors becomes
more difficult. In these designs, we limit the end-to-end distance
of the mirrors to 1 m. We set the mirror length and thickness to
100 and 0.5 mm, respectively, matching the dimensions of the
Lynx Design Reference Mission [37]. When combined with our
choice of1z∗ = 100 mm in both designs, this limits the range
of radii to rp/r ∗p < 3. To estimate the mirror mass, the mirror
substrates are assumed to be silicon. Using longer mirrors may
be possible but extends the mirror assembly along the optical
axis, roughly proportional to the mirror length.

We calculated the prescription of the primary and secondary
mirrors for N = 0 (a PH telescope). Calculating the prescrip-
tions for N = 1 (a WS telescope) is difficult due to numerical
instability, and we did not do this. The main benefit of a WS
design is that aberrations such as coma are reduced compared
to a PH design. However, we show (see Section 5) that for
telescopes with large focal ratios, field curvature is the only
important aberration for a PH design, and because the WS
design generally has similar field curvature, we do not expect
significant benefit from the WS design.

The graze angles for the primary and secondary mirrors of a
Type 2 telescope are different by1α = rp/2 f , which is less than
1.3 arc sec for both telescope designs. The primary mirror is con-
cave, the secondary mirror is convex, and both mirror surfaces
slightly deviate from a perfect cone. The radial departure of the

Fig. 6. Relative values of the geometric parameters for the µas
telescope design. The approximations (Case 1 of Table 1) are shown as
dashed white lines.

mirror surface from a cone is called the axial sag and is nearly the
same for each mirror. For the mas telescope, the difference in
axial sag between the two mirrors ranges from 30 nm root mean
square (rms) at the innermost shell to 2 nm rms at the outermost
shell. For µas telescope, the values are about 100× smaller. The
peak-to-valley axial sag is reported in Table 2.

One notable feature of a Type 2 telescope design is that the
graze angle of the reference shell may be chosen to suit the sci-
ence requirements, often without significantly affecting the
telescope geometry. The graze angle impacts angular resolution,
effective area and background noise, chromatic aberration,
and total mirror surface area and mass. We set the graze angle
of the reference shell to α∗ = 1◦ in both designs as a balance
between the competing attributes. Note that the graze angle
decreases with increasing shell radius, unlike ordinary Type 1
x-ray telescopes.

The three geometric parameters (after L = L∗ is chosen)
for the µas telescope design are shown in Fig. 6 as a function
of rp/r ∗p , using both the exact [Eqs. (4)–(6)] and approximate
(Table 1) formulas. These relationships are nearly identical for
the mas telescope design. The approximations (shown as white
dashed lines) result in less than 0.1% error in the three geometric
parameters for both telescope designs.

E. Extension to Lower-Resolution Telescopes

It may be desirable to design lower-resolution telescopes than
those presented here, because such telescopes might be easier
to build and fly in the short term. A lower-resolution telescope
(with, say, 10 mas angular resolution) could have a signifi-
cantly shorter focal length and looser pointing knowledge
requirements. However, directly applying our design process
to lower-resolution telescopes leads to several problems. For
example, as the radius of the outermost shell decreases, the axial
length of the mirror assembly remains nearly fixed (see Fig. 5)
unless the mirrors are made shorter. The field curvature also
increases with decreasing telescope diameter (see Section 5),
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Table 3. Performance Estimates of Two Telescope
Designs

µas Telescope mas Telescope

Resolution
a

1 keV 66µas 525µas
5 keV 14µas 111µas

Effective area
b

1 keV 4.3 m2 645 cm2

5 keV 2.9 m2 440 cm2

FOV
c

1.0 arc sec 1.2 arc sec
aHalf-power diameter (HPD).
bIncludes 20% loss from obscuration and other sources.
cSee Section 5 for discussion of FOV.

so the field of view (FOV) over which the image is sharp would
become smaller for a lower-resolution telescope.

Alternatively, we may use Eqs. (4)–(6) to design diffraction-
limited mirror modules that consist of azimuthal segments from
multiple shells (so each mirror module would have a roughly
trapezoidal aperture). Many modules could be combined inco-
herently (i.e., the path length is not necessarily the same for each
module) to obtain the desired effective area. The PSF of the
telescope is then the sum of the PSFs from each module, and
the resolution will depend on the size of the modules. Because
the path lengths only need to be matched within a module,
this approach may be simpler to build than a fully coherent
telescope. There are several potential complications to this
approach, because the focal ratio could be significantly smaller
and the field curvature may be different for different modules.
We leave this as future work.

3. RESOLUTION AND EFFECTIVE AREA

A. PSF

Once the geometry of a telescope is defined, we can calculate the
PSF and effective area that result from all of the shells (summa-
rized in Table 3). The intensity distribution at the focal plane
of a perfect telescope is the far-field diffraction pattern of the
pupil function, and the effective collecting area may be calcu-
lated from this intensity distribution. For a diffraction-limited
nested-shell grazing-incidence telescope, the pupil function is
a set of annular rings, with phase shifts arising from chromatic
aberration. Phase errors that vary within a shell and between
shells will also be present, e.g., due to misalignment or surface
errors, and the aperture function will also include blockage
from support structures. For brevity, we ignore these in the
present work, but they are important and will be considered
in the future. Tschunko [22] first studied the PSF arising from
thin annular apertures, and Harvey [38] considered the inco-
herent sum of multiple annular apertures for x-ray telescopes.
In contrast, here we consider the coherent sum of multiple
annular apertures, because the path lengths are matched for
each shell.

The pupil function G of the telescope, as a function of radial
coordinate x and energy E , is

G (x , E )=
M∑

m=1

(ρ (E , αm))
2 [circ (x/rm)− circ

(
x/r ′m

)]
,

(9)

where circ(a)= 1 for a ≤ 1 and 0 otherwise. There are M total
shells, and the radii rm and r ′m are the inner and outer radii of
the mth annulus. The reflection coefficient ρ is the complex
amplitude ratio of the reflected to incident electric fields and is
squared here because there are two reflections at nearly constant
graze angle within each shell. The reflection coefficient is found
using the Fresnel equations for the transverse-electric (TE) and
transverse-magnetic (TM) polarization components [39],

ρTM =
n2 sin α −

√
n2 − cos2α

n2 sin α +
√

n2 − cos2α
,

ρTE =
sin α −

√
n2 − cos2α

sin α +
√

n2 − cos2α
, (10)

where n = 1− δ − iβ is the index of refraction, and δ and
β are functions of photon energy [40]. In calculating the
PSF, we assume unpolarized light, i.e., ρ = (ρTE + ρTM)/2.
Throughout this paper, we assume an iridium surface with rms
roughness of 0.5 nm and sufficient thickness (>20 nm) to make
the effects of the underlying surface negligible. To account for
roughness, we multiply the reflection coefficient by the Nevot–
Croce factor [41], exp(−(4πσ/λ)2n sin αt sin α/2), where σ is
the rms roughness and cos αt = (1/n) cos α from Snell’s law.

If the aperture is illuminated by a plane wave with intensity
I0, the intensity I at the image plane is the squared magnitude of
the Fourier transform of the pupil function,

I (θ, E )
I0

=

∣∣∣∣∣ 1

i zθ

M∑
m=1

(ρ (E , αm))
2
[
rm J1 (krmθ)− r ′m J1

(
kr ′mθ

)]∣∣∣∣∣
2

,

(11)

where J1 is the Bessel function of the first kind and order 1, k =
2π/λ, and θ is the angular position on the image plane. We have
excluded some constant phase terms as they are the same for all
shells and have no effect on the intensity.

The reflection coefficient is complex, leading to a phase shift
from each reflection that depends on photon energy and graze
angle. This chromatic aberration, and a strategy for its mitiga-
tion, is discussed in detail in Section 4. Ignoring this issue for
now, and replacing ρ(E , αm)= |ρ(E , αm)| in Eq. (11), we
calculate and show the PSF for the µas telescope in Fig. 7. The
PSF is compared to that of a single-annulus telescope, which is a
telescope with one mirror shell that has 1 m inner diameter and
2.5 m outer diameter. Such a single-annulus telescope would
be very long and probably impractical but serves as a useful
comparison.

The data in Fig. 7 show that a significant portion of the energy
in the PSF of the µas telescope is far outside the central core.
Several diffraction orders are clearly seen, resulting from the
quasiperiodic radial spacing of the mirror shells. The inset of
Fig. 7 shows the core of the PSF, showing there is minimal differ-
ence between the µas telescope and a single annulus, other than
the fact that the intensity of the µas telescope PSF core is lower
because some power is diffracted to larger angles. The PSF of
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Fig. 7. PSF for the µas telescope design (blue) and a single-annular
aperture (black). Many diffraction orders from the nested shells are
present, effectively representing background noise. The inset shows the
central 60µas of the PSF on a linear intensity scale.

the mas telescope exhibits similar behavior, except the angular
values in the PSF core are increased by about a factor of eight.

B. Angular Resolution

Angular resolution has several commonly used definitions. The
Rayleigh criterion defines the angular resolution as the angular
radius of the PSF’s first zero, obtaining θRayleigh = 1.22 λ/D.
However, by this definition, the angular radius of the first zeros
of the PSFs of the µas telescope and a single annulus are both
nearly equal to θRayleigh, and this provides limited informa-
tion. Another measure of resolution is the half-power diameter
(HPD), which is the angular diameter at which the encircled
energy fraction (EEF) is equal to 0.50.

The EEF for an axisymmetric PSF is

EEF(θ, E )=

∫ θ
0 I
(
E , θ ′

)
/I0 θ

′dθ ′∫ θmax
0 I (E , θ ′)/I0 θ ′dθ ′

, (12)

where θmax is the maximum off-axis angle over which the PSF
is integrated. For determining angular resolution, we choose
to ignore background power, so we use θmax = 10 θRayleigh. The
angular resolution (and effective area, in the next section) is not
very sensitive to the choice of θmax, because there is very little
optical power between the core and the first background ring
(which is at about 2000 θRayleigh in Fig. 7).

The HPD is shown in Fig. 8 as a function of photon energy
for the µas and mas telescope designs. The effects of chromatic
aberration are also included in this figure and discussed in
Section 4. The HPD of the telescope (blue line) begins depart-
ing slowly from that of a single annulus (black dashed line)
around 5 keV (λ= 0.25 nm) in both telescopes. This is because
the largest graze angle in each telescope is 1◦, which is near the
critical angle αc ≈

√
2δ for 5 keV photons reflecting off of an

iridium surface [39]. At this energy, the innermost shells of the
telescope begin contributing significantly less optical power
to the PSF, and the effective inner diameter of the telescope

Fig. 8. HPD of (a) theµas telescope, and (b) the mas telescope. The
blue curve is the HPD accounting for all shells and assuming no phase
error for each shell (an unrealistic case). The black dashed curve is for
a single-annulus telescope (see Section 3.A). The yellow curve shows
the effects of chromatic aberration (CA), whereas the red curve shows
the benefit of chromatic compensation (see Section 4). The spikes
in the yellow curve between 2 and 3 keV correspond to absorption
edges of iridium. The reference energy E ∗ for chromatic aberration
compensation is 7 keV in both cases. The arrow points to where the
critical angleαc = 1◦, which is the largest graze angle in the telescopes.

increases. This causes the power in the central lobe of the PSF to
decrease, and eventually the HPD occurs at angles larger than
the first zero of the PSF, causing a jump in the HPD between
6 and 7 keV. Increasing the graze angle decreases the energy
at which the telescope HPD diverges from the single-annulus
telescope.

C. Effective Area

The effective area of a diffraction-limited telescope is the inte-
grated intensity in the core of the PSF (out to an angle θmax),
given by

ADL(E )=
∫ θmax

0
(I/I0) f 2θdθ, (13)

where f is the focal length. For a non-diffraction-limited
telescope, the effective area can be calculated by summing
the product of the projected area of each shell and its squared
reflectivity (where reflectivity is |ρ|2):
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ANDL(E )=
M∑

m=1

π(r 2
m − r ′2m )|ρ(E , αm)|

4. (14)

The effective area for a diffraction-limited telescope is
smaller than for a non-diffraction-limited telescope, because the
quasiperiodic blockage from the mirror edges diffracts power
away from the core of the PSF, as illustrated in Fig. 7. Becausde
the mirror spacing is non-uniform, the intensity far from the
PSF is many orders of magnitude smaller than in the core and
can be regarded as background power. For a one-dimensional
uniform-period binary amplitude grating with open-area frac-
tion η, the diffraction efficiency of the zeroth-order is η2 if the
illumination is spatially coherent and η if the illumination is
spatially incoherent. A diffraction-limited telescope is akin
to the spatially coherent case, and a non-diffraction-limited
telescope is akin to the spatially incoherent case. Therefore,
ADL(E )≈ ηANDL(E ). This suggests that for a diffraction-
limited telescope, blockage from mirror edges and structural
supports has a much more significant impact on effective area
than it does for a non-diffraction-limited telescope. Indeed, this
simple analysis roughly agrees with the PSF shown in Fig. 7,
where the open-area fraction of the aperture is 64%, and 67% of
the power lies within the core of the PSF (i.e., encircled energy
at θ = 0.13 mas, E = 5 keV, and θmax = 150 mas.) Similar
agreement is found for the mas telescope design.

The effective area (Fig. 9) is calculated using Eq. (13), with
θmax = 10 θRayleigh, as we did when calculating angular resolu-
tion. If we use a larger value of θmax, then the calculated effective
area is larger, but because the optical power that lies outside of
the PSF core has very low intensity, it is indistinguishable from
background noise and would not provide useful information.
In calculating the effective area, we also assume an additional
20% loss from support structures, a value somewhat higher than
assumed in the Lynx Design Reference Mission [42]. Choosing
a smaller graze angle for the reference shell can increase the
effective area at high energies, but also causes more power to be
diffracted to the wings of the PSF. For the µas telescope design,
the mirror surface area is 6 times larger than the Lynx Design
Reference Mission, whereas the effective area is twice as large at
1 keV and 25 times larger at 6 keV. For the mas telescope design,
the total mirror surface area is twice as large as Chandra, and the
effective area is similar. Based on the two examples given in the
introduction, an effective area comparable to that of Chandra,
about 1000 cm2, will be sufficient to achieve compelling science
goals.

D. Mirror Assembly Tolerances

Diffraction-limited performance requires maintaining equal-
length optical paths throughout the telescope to a small fraction
of the shortest photon wavelength (typically λ/14 rms [43]).
This is challenging for x-rays because the wavelength is small,
but the small graze angles used in x-ray telescopes result in the
most stringent surface and alignment requirements being only
on the order of 1 nm. A detailed mirror figure and assembly
tolerancing study was performed for flat mirrors as part of the
MAXIM mission study [23], and we will present a detailed tol-
erancing study for curved mirrors in a future paper. The tightest
tolerances arise due to changes in radial distance between the

Fig. 9. Effective area of theµas telescope (left) and the mas telescope
(right).

surfaces of the primary and secondary mirrors. The error in path
length e s resulting from errors in the radial gap e x and axial gap
e z between mirrors is given by

e s ≈ 2e x sin α + 2e z sin2 α. (15)

Because both the µas and mas telescope designs have mirrors
with grazing angles varying between 0.36◦ and 1◦, the tolerances
are similar for the two designs. Maintaining path length errors
below λ/14 rms at 5 keV (λ= 0.25 nm) requires maintaining
radial gap errors below about 0.5–1.5 nm rms and axial gap
errors below about 30–250 nm rms. The ratios of tolerances
to nominal dimensions are 150 ppb for the radial gap and
300 ppb for the axial gap, each roughly constant throughout
both telescopes. Surface height errors and alignment errors both
contribute to the path length error of Eq. (15).

It is expected that the primary and secondary mirrors
shells would each be separated into small segments along
the azimuthal direction. The alignment tolerances between a
pair of primary and secondary mirror segments are generally
significantly more stringent than the tolerances of pair-to-pair
alignment [23]. The one exception is the pitch alignment of
pairs to the telescope optical axis, where an angular pitch error
1e x/1z leads to a path length error of

e s ≈
(
r p − r s

) 1e x

1z
. (16)

For both the µas telescope and mas telescope designs,1e z must
be maintained to 0.5–1.5 nm rms (angular errors of 0.5–1 mas
rms) to obtain path length errors belowλ/14 rms.

New technology will be required to measure and fabricate
mirror surfaces for diffraction-limited telescopes. Although the
Chandra Observatory has demonstrated (and the Lynx concept
requires) 0.5 arc sec resolution, diffraction-limited performance
requires axial profile error only several times more stringent
than for those mirrors—certainly a challenge but plausible
in the coming decades. Diffraction-limited telescope mirror
shells would require significantly smaller roundness errors than
Chandra’s or Lynx’s mirrors. A more detailed analysis of curved
mirror surface and alignment requirements will be presented
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Fig. 10. Reflectivity (solid lines) and reflection-induced phase shift
φ (dashed lines) of a smooth iridium surface for three values of photon
energy.

in a future paper. Discussion of means to align and assemble
mirrors to the required tolerances is beyond the scope of this
paper, but clearly new technology will need to be developed.
The most stringent tolerances lie in the sub-nanometer range—
challenging to be sure—but examples of successful solutions in
this domain can be found in the astrophysics and semiconductor
manufacturing areas.

4. CHROMATIC ABERRATION

An x-ray telescope that uses mirrors at multiple graze angles
will have chromatic aberration. Chromatic aberration arises
because reflection from x-ray mirrors by design occurs below the
critical angle for total external reflection to achieve high reflec-
tivity. In this regime, the reflection-induced phase shift varies
with angle of incidence and photon energy. Above the critical
angle, the reflection-induced phase shift approaches zero for
all energies (because the index of refraction is smaller than 1 for
most materials in the x-ray band), but the reflectivity is severely
reduced. In this section, we discuss the effects of this chromatic
aberration. We then describe how adjusting the physical path
length and limiting the range of graze angles in the telescope can
compensate for the effects of chromatic aberration sufficiently
to enable diffraction-limited imaging over a wide energy band
(0.1–10 keV in both theµas and mas telescope designs).

The reflection coefficient, defined in Eq. (10), is the ratio
of reflected to incident wave amplitude. For x-rays, this coeffi-
cient is complex and can be represented by a phase shift φ and
magnitude |ρ| as

ρ(E , α)= |ρ|e iφ . (17)

Figure 10 shows the reflectivity |ρ|2 and phase shift φ for a
single reflection of unpolarized light from a smooth iridium
surface as functions of graze angle and photon energy. A positive
phase shift indicates that the reflected wave is advanced relative
to the incident wave. Other common x-ray mirror coating mate-
rials (e.g., Au, Pt, W) exhibit similar behavior below the critical
angle. In Section 3.A, we ignored the chromatic aberration
by assuming ρ = |ρ| in Eq. (11), but this assumption can be
removed to evaluate the effect of chromatic aberration. The

reflection-induced phase shift significantly degrades the angular
resolution for higher energies, as illustrated by the yellow curve
of Fig. 8 for theµas and mas telescope designs.

One approach to mitigating chromatic aberration is to adjust
the physical path length, as a function of graze angle, to compen-
sate for the phase shift at one energy (the reference energy, E ∗)
across the telescope aperture. The physical path lengths through
the telescope are therefore unequal, introducing a wavelength-
dependent phase error. The required path length adjustment for
the reference energy is given by

1s =
hc
E ∗
φ (E ∗, α)

2π
, (18)

where h is Planck’s constant and c is the speed of light. A positive
value of 1s will cause a phase delay that counters a positive
phase shift φ. Because φ ranges from 0 to π (see Fig. 10), this
requires a sub-nanometer path length adjustment, which can be
incorporated by adjusting s − L for each shell in Section 2.B.
The path length change of Eq. (18) will result in a net phase
shiftφ′:

φ′
(
E ∗, E , α

)
= φ (E , α)−

E
E ∗
φ
(
E ∗, α

)
. (19)

The red curve of Fig. 8 shows the HPD of the µas and mas
telescope designs when chromatic aberration has been included
but compensated by using Eq. (18). Using a reference energy
E ∗ = 7 keV results in angular resolution that is very close to
the resolution when chromatic aberration is not considered.
The reference energy can be chosen depending on the science
requirements. The Strehl ratio is defined as the peak intensity
of the PSF of an aberrated optical system divided by that of
the same system without aberrations, and a system with Strehl
ratio more than 0.8 is typically considered diffraction limited.
Comparing a telescope without chromatic aberration and one
with compensated chromatic aberration, we find that the Strehl
ratio is more than 0.8 for the entire 0–10 keV energy band
for both telescope designs, indicating that this compensation
approach enables diffraction-limited performance.

To enhance reflectivity at some energies, compared to single-
layer metal coatings, x-ray telescopes often employ multi-layer
coatings that alternate low-electron-density materials with
high-electron-density materials. We did not investigate chro-
matic aberration that would result from such coatings, but
this would need to be considered in addition to the reflectivity
when designing multi-layer coatings for a diffraction-limited
telescope.

5. DETECTOR SIZE AND OFF-AXIS
ABERRATIONS

The FOV of a diffraction-limited x-ray telescope is limited by
detector size (or possibly vignetting). The maximum detector
size over which a sharp image is formed is limited by off-axis
aberrations and the position control accuracy of the detector
relative to the optical axis of the telescope. Here we determine
the position control tolerances, as a function of detector size,
that enable sharp imaging over the entire detector.

The detector spacecraft, which is flying in formation with
the mirror assembly spacecraft, may have position errors, so the



Research Article Vol. 59, No. 16 / 1 June 2020 / Applied Optics 4911

line of sight corresponding to a pixel will vary over time, and the
detector position (xd , yd , zd ) must be tracked to reconstruct
images from photon counts. The line of sight, which is defined
as the line connecting a particular pixel on the detector to the
point where the principal surface intersects the optical axis of the
mirror assembly (line PQ of Fig. 11), should be measured with
angular accuracy better than the angular resolution, with respect
to an inertial reference frame (pointing knowledge). Because
x-ray photons are individually counted and time tagged, control
accuracy of the line of sight, which is accomplished by con-
trolling the detector position relative to the optical axis, only
needs to be smaller than the FOV (pointing control). Methods
of measuring the angles of the optical axis relative to an inertial
reference frame, and measuring the detector position relative
to the nominal focus position, have been considered previously
[17,29], but these important issues lie beyond the scope of this
paper.

The mirror assembly has off-axis aberrations and limited
DOF, and together they limit how far the detector can deviate

1θx ≈
1

4

(
r
f

)2

tan2 sin 2γ −

[
R1 + R2 + r 2/2 f

R2 R1
r tan22+

r
f
(zd − L)

f

]
sin γ,

1θy ≈
1

4

(
r
f

)2

tan2 (2+ cos 2γ )−

[
R1 + R2 + r 2/2 f

R2 R1
r tan22+

r
f
(zd − L)

f

]
cos γ, (20)

Fig. 11. Depiction of mirror assembly spacecraft with principal
surface, optical axis, and best focal surface illustrated. The detector
spacecraft, with detector width W , is separate from the mirror assembly
and located at position P . It must remain near the best focal surface
zB F , which is a paraboloidal surface with radius of curvature Rfield at
the optical axis, to obtain a sharp image of an object along the line of
sight PQ.

from the nominal focus position and how large of a flat detector
can be used while maintaining a sharp focus over the entire
detector. To estimate the position control tolerances for a par-
ticular detector size, we first discuss the telescope aberrations.
The transverse ray aberration (TRA) analysis of Saha [44] can be
simplified for a single shell of a long-focal-length PH telescope
(N = 0) with f /D∼ 105. We find that the most important
aberration—curvature of field—is nearly the same for all shells.

Let us consider a ray at field angle2, having a direction vector
(0, sin2, cos2), and intersecting the entrance aperture at
location (r sin γ, r cos γ, 0) given in polar coordinates. In
the craoordinate frame shown in Fig. 11, the nominal focus
position is located at (0, f tan2, L), and the ray intersects the
detector plane at a position that deviates from the nominal focus
position by1x and1y . Saha [44] derives these TRA functions
and expands them into functions of tan2, tan2 sin 2γ , and
tan22 sin γ for1x (and cosine terms for1y ). For a large focal
ratio, only a few terms are significant, and the angular TRA
functions,1θx =1x/ f and1θy =1y/ f , simplify to

where zd is the axial position of the detector, and R1 =

(2 f (s − L)− r 2
p )/(s + L − 2 f ) and R2 = (s 2

− L2
− r 2

p )/

(2 f − 2s + r 2
p /2 f ) are the radii of curvature of the primary

and secondary mirror surfaces at the optical axis, respectively
[32].

The first term of Eq. (20) is due to coma, and the second
term is due to curvature of field. Because r / f ∼ 10−5, the
contribution to blur from the coma term, for a large field angle
of 1◦ (a field angle that would cause many additional problems,
such as reflectivity loss), would still be less than 0.1 µas. For a
WS telescope, it is exactly zero. Therefore, the only significant
contribution to PSF blurring is the field curvature term. Using
Eqs. (7) and (8) and the expressions for R1 and R2, the parabolic
surface of best focus zBF is approximately

zBF ≈ L −
21z
r 2

p
y 2
= L +

1

2Rfield
y 2. (21)

The best focal surface is axisymmetric, but in Eq. (21) it is
independent of x because of the chosen direction vector of the
incoming ray. For theµas telescope, the radius of field curvature
Rfield is approximately −2.5 m, and for the mas telescope it is
only −30 mm. The field curvature is nearly constant for all
shells in each telescope, because 1z/r 2

p is approximately con-
stant (see Table 1). We note that the telescope DOF, given by
DOF=±2λ( f /D)2, is very large, so even a flat detector can
still achieve a large FOV with sharp focus.

We now turn to estimating the required position control
tolerances for a flat detector of width W (with FOV=W/ f )
and centered at position (0, yd , zd ), with normal vector parallel
to the optical axis. The rms angular blur due to curvature of field
is the same in the x and y directions, and because Rfield is nearly
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constant for all shells in the telescope, we can approximate the
rms angular blur by integrating the square of the second term
of Eq. (20) from min(rp) to max(rp). For simplicity, we do
not apply any weighting to the shells to account for different
reflectivity or blockage in this estimate. The rms angular blur at
the edge of the detector (0, y , zd ) is then

〈1θ〉 ≈

[
1z
r 2

p
y 2
+

zd − L
2

]
max rp

f 2

√
1+

(
min rp

max rp

)2

.

(22)

For y ≥ 0, the largest rms blur occurs at (0, yd +W/2, zBF +

εz), where zd = zBF + εz, and εz is the axial deviation of the
detector from the best focal surface.

To provide a rough estimate of the required flight control
tolerances for a given detector width, we assume that εz = yd

(i.e., the position control error in the z direction is the same as
that in the y direction) and determine the position control error
yd at which the rms blur at the edge of the detector is equal to
half of the HPD, i.e., 〈1θ〉 = θHPD/2. This occurs at

yd =

f 2θHPD
max rp

(
1+

(
min rp
max rp

)2
)−1/2

−
1
2 W2 1z

r 2
p

1+ 2W 1z
r 2
p

. (23)

For the mas telescope, a 150 mm-wide detector composed of
15 µm pixels (108 total pixels, FOV 1.2 arc sec), and with a
125 µas HPD at 5 keV (λ= 0.25 nm), the detector must be
flown within ±300 mm of the best focal surface in the axial
direction and within 300 mm of the optical axis. Here the axial
position tolerance is smaller than the DOF (DOF=±0.9 m)
because the detector’s edge is farther from the strongly curved
best focal surface than is the center. For the µas telescope, even
with an extremely large detector that is 1.5 m wide and with
similar-sized pixels (1010 total pixels, FOV 1.0 arc sec), and with
a 14 µas HPD at 5 keV, the detector can be flown with±1.5 m
tolerance in the axial and lateral directions, which is similar to
the DOF (DOF=±1.8 m) due to the gently curved best focal
surface. As the detector size is reduced, the position control
tolerances loosen.

Using a detector with smaller pixels has positive and negative
effects on many aspects of the optical design, and choosing the
pixel size for a particular design requires careful consideration.
Smaller pixels will decrease the required focal length and make
some aspects of formation flying easier. However, reducing the
focal length of the telescope without modifying r ∗p , 1z∗, and
α∗ reduces r p,max (see Table 1), reducing the range of shell diam-
eters that can be path length matched, which affects both the
PSF and effective area. Reducing the focal ratio also decreases
the DOF while field curvature is unaffected, and eventually the
coma aberration may also become important. These issues could
make formation flying tolerances more stringent. A smaller
pixel size is not necessarily better, and the trade-offs will require
detailed analysis.

Counterintuitively, the lateral position control tolerances
(as measured in the mirror assembly frame of reference) can
be larger than the detector size. In other words, the optical
axis, which is fixed relative to the mirror assembly, may rotate

relative to the line of sight without blurring the image. The
mirror assembly does not need to remain fixed in inertial space
to acquire a sharp image of an x-ray source, so position control-
induced forces on this ultra-precision opto-mechanical system
may be kept small. Of course, the image of the source must lie on
the detector, so the line of sight must be controlled to a tolerance
of some small fraction of the FOV, by controlling points P and
Q in Fig. 11.

We list the fields of view calculated here in Table 3, because
the detector position control tolerances are not overly tight for
these detector sizes (and corresponding FOVs). If the detector
can be tilted or curved, these tolerances may be relaxed some-
what, but we have not investigated this. Using a different optical
prescription may also flatten the best focal surface while still
achieving small effects of coma and astigmatism.

6. CONCLUSIONS

We have presented optical designs for two diffraction-limited
nested-shell grazing-incidence x-ray telescopes, showing that
such telescopes can have compact optical assemblies and achieve
high angular resolution, large effective area, and wide FOV over
a wide energy band. The µas telescope design, 5 m in diameter,
features 14 µas angular resolution and 2.9 m2 effective area at
5 keV photon energy, enabling breakthrough scientific progress
in a flagship-class mission. The mas telescope design, 0.6 m
in diameter, features 525 µas angular resolution and 645 cm2

effective area at 1 keV. This telescope is significantly smaller
but could achieve sub-milli-arcsecond imaging, while serving
as a pathfinder for the flagship mission. The mirror assembly
for both telescopes is limited to less than 1 m in length, which
makes maintaining nanometer-position stability of mirrors
much more feasible than for larger structures. We described
x-ray telescope chromatic aberration that was successfully com-
pensated by slightly adjusting the physical path length through
each shell. We also investigated the effects of off-axis aberra-
tions and found that curvature of field is the only significant
aberration. Due to the large DOF, a flat detector can provide
a sharp image over a very large FOV, around 1 arc sec in both
telescopes. Furthermore, we found that lateral and axial position
control tolerances of the detector spacecraft should be on the
order of 1.5 and 0.3 m for the µas and mas telescope designs,
respectively. Although there are many technical challenges to
achieving µas x-ray imaging, especially in making diffraction-
limited mirror assemblies, we did not find any fundamental
barriers. The design process we presented can be employed
for designing future high-resolution x-ray telescopes targeted
toward specific scientific goals. The topics we have presented
could each be studied in far greater detail, but we hope this work
has enumerated the major issues and provides a road map for
others to follow.
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