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ABSTRACT

Accurate fabrication of high-aspect ratio (HAR) structures in applications from semiconductor devices to x-ray observatories is essential for
their optimal performance because their performance directly depends on their structure. High-efficiency critical-angle transmission (CAT)
gratings enable high-resolution x-ray spectroscopy in astrophysics, but their performance is only ideal when certain performance-critical
parameters, like the bar tilts introduced during deep reactive-ion etching, are tuned to precise values. Traditional measurement methods like
small-angle x-ray scattering (SAXS) are accurate, but limit the development of robust control algorithms to nudge performance-critical
parameters toward favorable values because they are slow and often destructive. We present a fast, accurate, nondestructive measurement
method using Mueller matrix spectroscopic ellipsometry and machine learning. Given a HAR structure, we train on rigorous coupled-wave
analysis simulation data to predict Mueller matrix spectra from input performance-critical parameter values. We then invert this forward
problem by freezing our network weights, measuring experimental Mueller matrix spectra, and vanilla gradient descending on perfor-
mance-critical parameters to values that correspond to the input Mueller matrix spectra. Introducing machine learning to invert the forward
problem reduces computation time, and experimental results demonstrate close agreement between our method’s determined tilt and SAXS
measurements. Our accurate, fast measurement method paves the way for the development of robust control algorithms that adjust fabrica-
tion parameters in response to measurement, ensuring optimal performance in not only CAT gratings but also HAR structures embedded
in applications from semiconductor to microelectromechanical systems fabrication.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1116/6.0004058

I. INTRODUCTION

High-aspect ratio (HAR) microelectronic and photonic
devices are critical components in advanced technological applica-
tions, including microelectromechanical systems (MEMSs), semi-
conductor devices, solar cells, and x-ray observatories. Accurate
fabrication is essential for HAR device performance because

optimal performance is by virtue of the precise structure itself. For
example, smooth and straight sidewalls in HAR device structures
minimize defects and roughness, reducing electrical resistivity and
improving performance in MEMS.1

Accurate fabrication is only possible through measurement.
Critical structure parameters (like a parameter that formally defines

ARTICLE pubs.aip.org/avs/jvb

J. Vac. Sci. Technol. B 43(1) Jan/Feb 2025; doi: 10.1116/6.0004058 43, 012801-1

© Author(s) 2025

 07 January 2025 16:12:47

https://doi.org/10.1116/6.0004058
https://doi.org/10.1116/6.0004058
https://pubs.aip.org/action/showCitFormats?type=show&doi=10.1116/6.0004058
http://crossmark.crossref.org/dialog/?doi=10.1116/6.0004058&domain=pdf&date_stamp=2025-01-07
https://orcid.org/0009-0008-1522-9066
https://orcid.org/0009-0003-3571-6148
https://orcid.org/0000-0002-8536-2750
https://orcid.org/0009-0008-8332-2967
https://orcid.org/0000-0001-9272-1486
https://orcid.org/0000-0001-5927-3300
https://orcid.org/0000-0001-9980-5295
https://orcid.org/0000-0001-6932-2612
mailto:shiva271@mit.edu
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1116/6.0004058
https://pubs.aip.org/avs/jvb


smoothness) that yield optimal device performance must be mea-
sured, ideally in real-time. If measurements deviate from desired
values, control algorithms can correct fabrication parameters to
nudge performance-critical structure parameters to these desired
values. For example, in the critical-angle transmission (CAT) diffrac-
tion grating bars for x-ray observatories discussed in this paper,
near-zero-degree tilt bars are crucial for optimal performance. When
fabricating diffraction gratings, accurate measurement of the grating
bar tilt can reveal deviations from zero-degree tilt bars. Control algo-
rithms can then perturb etch parameters like substrate bias to ensure
that the tilt remains near zero.2

A current limitation to the existence of such robust control
algorithms for all HAR applications from MEMS to semiconduc-
tors, is the speed of measurement. Traditional techniques like scan-
ning electron microscopy (SEM) and atomic force microscopy
(AFM) are accurate but often slow and limited in real-time
measurements.3 In this paper, we present a method for fast and
accurate measurement of performance-critical HAR structure
parameters. We demonstrate the efficacy of our method by using
it to measure bar tilts in CAT gratings, but the method can be
generalized to measure performance-critical HAR structure param-
eters in many other micro electro/photonic devices, especially those
that are periodic. This paves the way for robust control algorithms
that perturb fabrication parameters in real-time, ultimately acceler-
ating optimal performance microelectronic and photonic device
development.

CAT gratings, fabricated from silicon-on-insulator (SOI)
wafers, are ultra-HAR structures used in high-resolution x-ray
spectroscopy.4–7 They are blazed transmission gratings, reflecting x
rays off their sidewalls at grazing angles below the critical angle for
total external reflection, thus maximizing diffraction efficiency in
higher orders and enabling high spectral resolving power (Fig. 1).
They combine the high diffraction efficiency and resolving power
of blazed reflection gratings with the practical advantages of trans-
mission gratings.

One critical challenge in fabricating CAT gratings is the intro-
duction of undesired grating bar tilts during the deep reactive-ion
etching8 (DRIE) step (Fig. 2). These tilts significantly affect the
incident x-ray angle, impacting the blazing behavior.9,10 Accurate
measurement and characterization of these bar tilts are essential for
fine-tuning of the DRIE step and thus optimizing grating perfor-
mance.2 For CAT gratings and other HAR structures, traditional
methods like small-angle x-ray scattering (SAXS) can be accurate
but require destructive sample thinning if used early in the fabrica-
tion process and are time consuming.9

The basic CAT grating fabrication steps are shown in Fig. 3.
Initial steps (1 and part of 2) are performed on specially designed
200 mm-diameter SOI wafers patterned at MIT Lincoln Lab.
Subsequent steps are performed on campus labs including
MIT.nano. Mueller matrix spectroscopic ellipsometry (MMSE) can
be applied immediately after the critical DRIE of the device layer
(Step 3), providing prompt feedback without requiring thinning the
back side layer as required for SAXS.

We propose using MMSE for the nondestructive characteriza-
tion of bar tilts in CAT gratings. MMSE measures changes in polar-
ization as light reflects off a sample, providing detailed information
about the sample’s optical properties and structure. By capturing

experimental MMSE spectra from the sample grating, we can build
a model of the grating using a rigorous coupled-wave analysis
(RCWA)-based electromagnetic solver.14

The experimental setup captures the MMSE spectra, which are
then compared to the modeled spectra. The optimization process
involves calculating the gradient of the square deviation between
the experimental and modeled spectra with respect to the free
parameters. This allows us to iteratively adjust the free parameters
until the model spectra converge with the experimental data.
Traditional approaches perform gradient calculations through finite
differences with RCWA simulations at each step, which is compu-
tationally intensive and time-consuming. The novelty in our
method is in that we replace RCWA with a neural network, and
gradient descend on the input space to find a solution that best
approximates experimental spectra. To our knowledge, this tech-
nique inspired by generative artificial intelligence has not been
applied in HAR metrology before. We do this by first generating
training data with RCWA-simulated spectra across free parameters.
We train the neural net to solve the forward problem of predicting
an MMSE spectra, given a point in the free parameter space. Once
trained, the neural network approximates RCWA in an analytical

FIG. 1. Principle of CAT diffraction gratings. X rays efficiently reflect from nano-
polished sidewalls of grating bars. Diffraction efficiency is enhanced (blazed)
when the angle of incidence onto the side walls, α, is comparable to the angle,
βm, of a particular mth diffraction order.
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form. The gradient is then calculated analytically through the
network with the chain rule by freezing the network weights.

The robustness of our method is evident in its speed, con-
sistency, and accuracy compared to calculating the gradient
with finite differences using RCWA. Our neural network-based
approach not only accelerates the optimization process but also
maintains high accuracy in parameter estimation. Our method
provides detailed results of the bar tilt across the entire wafer.
By measuring multiple points on the wafer, we map the tilt
variations introduced during the DRIE process. The results of
the MMSE-measured tilt are validated against SAXS measure-
ments, demonstrating that the MMSE method provides consis-
tent and accurate tilt measurements. The non-destructive and
rapid nature of MMSE, combined with the computational effi-
ciency of neural network-based optimization, offers a powerful
tool for characterizing and improving the fabrication of CAT
gratings.

II. PHYSICAL FOUNDATIONS

A. Scatterometry

Scatterometry is a metrology technique used to determine the
structure of a sample by analyzing the spectra of light that interacts
with it.

It relies on the idea that the spectral response of light, when it
interacts with a periodic structure, is unique to the structure’s geo-
metric and material properties. The scattered light carries informa-
tion about the sample, which can be decoded to reconstruct the
sample’s physical characteristics.

One important aspect of the interaction between light and the
sample is depolarization. Depolarization occurs when the polariza-
tion state of the incident light goes from fully polarized to partially
polarized. This transformation to partial polarization is highly

indicative of the sample’s structural properties, particularly in
complex, anisotropic structures like HAR microelectronic and pho-
tonic devices.

B. Jones vectors and Mueller matrices

Jones calculus is a mathematical formalism used to describe
the polarization state of light and its transformation through
optical elements. Although we do not use Jones vectors directly in
our analysis, discussing them provides a foundational understand-
ing of polarization. A Jones vector represents the electric field com-
ponents of fully polarized light in a given two-dimensional
complex vector space

E ¼ Ex
Ey

� �
: (1)

An optical element is represented by a Jones matrix J, which
transforms the input Jones vector Ein to the output Jones vector
Eout,

Eout ¼ JEin: (2)

While Jones calculus is effective for fully polarized light, it
does not capture partially polarized light, which manifests when
light interacts with anisotropic structures like HAR microelectronic
and photonic devices.

To account for depolarization, we use the Mueller matrix for-
malism. The Mueller matrix M is a 4� 4 matrix that transforms
the Stokes vector of the incident light Sin to the Stokes vector of the
scattered light Sout,

Sout ¼ MSin: (3)

FIG. 2. Etch chamber electrostatics can cause undesirable bar tilts across wafers. (a) Ideal grating with no bar tilt. (b) Grating with bar tilt increasing with wafer radius.
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The Stokes vector S captures light that is in a distribution of
polarization states and is defined as

S ¼
S0
S1
S2
S3

0
BB@

1
CCA ¼

Ix þ Iy
Ix � Iy

I45� � I�45�
IR � IL

0
BB@

1
CCA: (4)

The coordinate system is defined such that x and y are the
orthogonal linear polarization directions with respect to the hori-
zontal and vertical axes of the laboratory frame. I is the light’s
intensity in a particular polarization direction. 45� and �45�
denote the polarization directions at þ45� and �45� relative to the
horizontal axis, and R and L represent the right and left circular
polarizations, respectively.

To obtain the Mueller matrix M, we use linearly independent
Stokes vectors as inputs and measure the corresponding output

Stokes vectors. (The experimental setup is described in Sec. VI A.)
By solving a system of linear equations, we can determine the ele-
ments of M.

A common approach is to choose the four orthonormal basis
states in the standard basis as the four linearly independent Stokes
vectors. The output Stokes vector for each input basis state then
becomes a column in the Mueller matrix.

By measuring the Mueller matrix M(λ) across a range of wave-
lengths, we construct a spectral tensor M(λ). This tensor captures
the wavelength-dependent polarization transformation properties
of the sample

M(λ) ¼
M11(λ) M12(λ) M13(λ) M14(λ)
M21(λ) M22(λ) M23(λ) M24(λ)
M31(λ) M32(λ) M33(λ) M34(λ)
M41(λ) M42(λ) M43(λ) M44(λ)

0
BB@

1
CCA: (5)

FIG. 3. Basic CAT grating fabrication steps include front side (device layer) patterning, etching the front side oxide mask, aligned back side patterning, etching back side
oxide mask, DRIE of the Si device layer, wet KOH sidewall polish (Ref. 11) [Reprinted with permission from Bruccoleri et al., J. Vac. Sci. Technol. B 31, 06FF02 (2013).
Copyright 2013 American Vacuum Society], front side protection and mounting to carrier, DRIE of the Si handle layer, separation from carrier, front side clean, critical-point
drying, and buried oxide removal (Refs. 12 and 13) [Reprinted with permission from Bruccoleri et al., J. Vac. Sci. Technol. B 34, 06KD02 (2016). Copyright 2016,
American Vacuum Society; Reprinted with permission from Heilmann et al., Proc. SPIE 11444, 114441H (2021). Copyright 2021, SPIE]. MMSE can be applied immediately
after the critical DRIE of the device layer (step 3), providing prompt feedback without thinning the back side layer for SAXS.
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Using the Mueller matrix formalism to determine the struc-
ture of HAR microelectronic and photonic devices presents several
challenges. The relationship between the Mueller matrix elements
and the physical parameters of the sample is nonlinear.
Furthermore, depolarization effects introduce further complexity,
requiring sophisticated algorithms and models to accurately inter-
pret the measured spectra. Despite these challenges, the compre-
hensive information provided by MMSE makes it a powerful tool
for characterizing HAR structures.

III. MATHEMATICAL FORMULATION

The ultimate goal of our method is to map the measured
spectra directly to the physical structure of the HAR microelec-
tronic and photonic devices. This involves determining the struc-
tural parameters of the sample from the spectral data obtained
through MMSE.

Directly mapping the spectra to the structure is challenging
because the spectra are influenced by multiple interdependent
parameters, each simultaneously contributing to the overall
response.

Instead, we solve the forward problem using RCWA simula-
tions and invert it. Our method is essentially a method to invert
RCWA simulations that is faster and less computationally intensive
than other methods in the literature, while maintaining accuracy.
RCWA is a semi-analytical electromagnetic simulation method that
computes the diffraction efficiencies of periodic structures by
solving Maxwell’s equations. It provides a way to generate theoreti-
cal spectra for a given set of structural parameters, which can then
be compared with the experimental spectra.

A. RCWA simulation

RCWA discretizes the structure into layers and solves
Maxwell’s equations in each layer. The electric and magnetic fields
within each layer are expressed as a Fourier series, and the boun-
dary conditions are applied at the interfaces between layers. The
resulting system of linear equations is solved to obtain the diffrac-
tion efficiencies.

Mathematically, RCWA can be described as follows. Let E(r)
and H(r) be the electric and magnetic fields, respectively, in the
grating structure. The fields can be expanded in terms of spatial
harmonics,

E(r) ¼
X
n

En e
ikn�r, H(r) ¼

X
n

Hn e
ikn�r, (6)

where kn are the wave vectors of the spatial harmonics. The fields
within each layer are coupled through the boundary conditions,
leading to a matrix eigenvalue problem that can be solved to obtain
the diffraction efficiencies.14

B. Confining physical model space

To make the problem tractable, we confine the parameter
space by selecting a physical model that captures the essential fea-
tures of the HAR microstructures. This reduces the dimensionality
of the parameter space from a very large one that captures the

space of all possible HAR microstructures to one that is smaller,
namely, less than 10. Formally, we say that our parameter space is
reduced from Rd to Rd0 , where d0 � d, Rd is the number of dimen-
sions in a large space that captures all possible HAR microstruc-
tures, and Rd0 only captures variations in the performance-critical
parameters of our structure,

Rd ! Rd0 : (7)

Typical parameters in this reduced space, shown in Fig. 4,
include the thickness and offset of the SiO2 hard mask layer, the
tilt angle of the grating bars, and the coefficients of a Legendre
polynomial parameterization of the trench critical dimension (CD).

C. Free parameter selection and minimization of
differences between RCWA and experimental spectra

Once the physical model is defined, we select the free parame-
ters that are varied during the optimization process. Table I sum-
marizes the performance critical parameters that we allow to vary,
and their ranges of perturbation. The goal is to find the set of
parameters that minimizes the mean squared error (MSE) between
the RCWA-simulated spectra and the experimental MMSE spectra.
This optimization problem can be formally stated as

p* ¼ argmin
p

Msim(p)�Mexp

�� ��2, (8)

where p is the vector of free parameters, Msim(p) is the simulated
Mueller matrix spectra across wavelengths, and Mexp is the experi-
mental Mueller matrix spectra across wavelengths.

To demonstrate that the RCWA-simulated spectra are indeed
sensitive to the performance-critical parameters, we have chosen to
vary in our optimization process; we vary these parameters and
visually inspect the resultant RCWA-simulated spectra. The simu-
lated spectra have 16 different matrix elements as a function of
wavelength. All the matrix elements have sensitivity to our
performance-critical parameters, so we fit to all matrix elements in
our method; however, we note that the off-diagonal elements of the
Mueller matrix, especially in the upper-right and lower-left quad-
rants, are more sensitive to asymmetry, because they capture the
cross-polarization effects and interactions between different polari-
zation states. The diagonal elements generally describe the overall
intensity and depolarization effects, which are often related to sym-
metric properties of the sample. The difference between our neural
network’s approximation of RCWA (the predicted spectra), and the
spectra that we measure is called a “loss” function.

We carefully incorporate the above insights about the sensitiv-
ity of the Meuller matrix elements into our loss function.
Specifically, we use the mean squared error between the predicted
and measured spectra because this maximizes the Bayesian likeli-
hood of a predicted spectra being the true, underlying spectra,
given a measurement spectra (assuming Gaussian noise and
uniform prior). Weighing the upper-right and lower-left quadrants
five times more than on-diagonal elements yields the following loss
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function:

L ¼ 1
N

X600 nm
λ¼200 nm

X4
i¼1

X4
j¼1

wij Mm
ij (λ)�M p

ij (λ)
� �2

, (9)

where

wij ¼
5, if (i, j) [
{(1, 4), (4, 1), (2, 4), (4, 2), (1, 3), (3, 1), (2, 3), (3, 2)},
1, otherwise,

8<
:

N is the total number of elements summed over all wavelengths, m
stands for measured, and p stands for predicted. We do not use this
exact loss function, though. Instead, we use the following similar

loss function:

L ¼ 1
N

X600 nm
λ¼200 nm

X4
i¼1

X4
j¼1

Mm
ij (λ)�M predicted

ij (λ)
� �2

þ
X600 nm

λ¼200 nm
5 Mm

41(λ)�Mm
14(λ)� M p

41(λ)�M p
14(λ)

� �� �2h

þ 5 Mm
42(λ)�Mm

24(λ)� M p
42(λ)�M p

24(λ)
� �� �2

þ 5 �(Mm
13(λ)þMm

31(λ))� �(M p
13(λ)þM p

31(λ))
� �� �2

þ 5 �(Mm
32(λ)þMm

23(λ))� �(M p
32(λ)þM p

23(λ))
� �� �2i

:

(10)

Again, N is the total number of elements summed over all
wavelengths, m stands for measured, and p stands for predicted.

FIG. 4. Diagram illustrating a CAT grating on a representative 200 mm-diameter silicon wafer. (a) Cross sectional SEM image of a grating taken on a similar wafer to the
one processed in this paper. (b) A model (not to scale) representing the 1 mm pitch L2 hexagonal support mesh, 5 μm period L1 support mesh, and 200 nm period CAT
grating bars. (c) Depiction of a physical model used to generate RCWA data and confine the model parameter space. CAT grating bars, and top and bottom oxide layers
are included in the model. The L1 and L2 support structures are not included in our current model.
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This loss function that weighs pairs of off-diagonal elements exag-
gerates the effect of the off-diagonals more than weighing the ele-
ments themselves, like in (9), because of the cross terms that
appear in the quadratic.

Figure 5 illustrates our sensitivity analysis to tilt, where we
vary tilt on the order of a few degrees and plot a linear combination
of each of the upper-right and lower-left matrix element sums. The
distinct change in the spectra as a function of bar tilt bolsters our

TABLE I. Table that summarizes the performance-critical parameters for HAR microstructures and their perturbation ranges. These parameters include the height and tilt
angle of the grating bars and the coefficients of the Legendre polynomial parameterization of the trench critical dimension (CD). The input, x, to the Legendre polynomials is
the height from the bottom of the trench, and the output is the width of the grating bars.

Parameter Description Range (Min, Max) Discretization

ht.3 Height of the grating bar (nm) (2500.0, 5000.0) 1.0
xtilt.4 Bar tilt angle of the grating bar (degrees) (−0.750, 0.750) 0.01
pw0.4 P0(x): Constant Legendre coefficient of bar width (50.0, 120.0) 1.0
pw1.4 P1(x): Linear Legendre coefficient of bar width (−75.0, 75.0) 1.0
pw2.4 P2(x): Quadratic Legendre coefficient of bar width (−100.0, 100.0) 1.0
pw3.4 P3(x): Cubic Legendre coefficient of bar width (−100.0, 100.0) 1.0
pw4.4 P4(x): Quartic Legendre coefficient of bar width (−100.0, 100.0) 1.0

FIG. 5. Mueller matrix elements simulated in the presence of a bar angle tilt (color coded in the range of �0:7� to þ0:7�) over the spectral range of 200–650 nm. Data
were generated using the physical model illustrated in Fig. 4(c). Note the sensitivity of the off-diagonal element linear combinations to the tilt.
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hypothesis that we should be able to determine the tilt of a grating
bar given experimental spectra by matching it to one simulated
by RCWA.

The physical model and the parameter selection help in reduc-
ing the complexity of the problem while retaining the essential
characteristics of the structure. This confined parameter space
allows for more efficient and accurate optimization.

IV. EXISTING PARAMETER DETERMINATION METHODS

Traditional methods for determining the parameters of HAR
microelectronic and photonic structures from MMSE spectra often
involve exhaustive grid searches. These methods explore the param-
eter space by computing the simulated spectra for every possible
combination of parameters and comparing it to the experimental
spectra.

All methods attempt to solve the optimization problem in (8)
by finding a p* that minimizes the error, E, between the simulated
and experimental spectra, over the space of p, where E is defined as

E(p) ¼ Msim(p)�Mexp

�� ��2: (11)

For instance, in a naïve grid search approach, the total compu-
tation time can be extremely high due to the exponential growth of
possible parameter combinations with the number of parameters
d0. If there are 10 grid points in each dimension and each RCWA
computation takes 0.1 s, the total computation time for a parameter
space of dimension d0 ¼ 5 is

Time at Query ¼ RCWAtime � (gridpoints)d
0
, (12)

Time at Query ¼ 0:1� (10)5 s

¼ 100 000 s � 28 h: (13)

This demonstrates the impracticality of naïve grid search
methods because of their computational intensity and time
requirements.

The most popular alternative approach is the library method,
which involves precomputing a lookup table of spectra for differ-
ent parameter sets and storing this in a database. When a new
experimental spectrum is measured, the closest matching precom-
puted spectrum is found using k-nearest neighbors (k-NNs)
search.

The precomputation time for this method is similar to the
grid search

Precomputation Time ¼ RCWAtime � (gridpoints)d
0
, (14)

Precomputation Time ¼ 0:1� (10)5

¼ 100 000 s � 28 h: (15)

Once the library is built, the time to compute the square dif-
ference for a given experimental data point is significantly reduced.

Assuming the square difference calculation takes 0.01 s,

Time at Query ¼ 0:01� (10)5

¼ 1000 s � 17min: (16)

Another method is gradient descent using finite differences,
which involves iteratively updating the parameter estimates to mini-
mize the error between the simulated and experimental spectra.
The update rule for gradient descent is given by

pkþ1 ¼ pk � η∇E(pk), (17)

where η is the learning rate and ∇E(pk) is the gradient of the error
function. Once Msim(pk) and Mexp become close enough accord-
ing to some stopping condition, indicated by the gradient, ∇E(pk),
vanishing, pk is set to p*.

The gradient can be approximated using finite differences,

@E
@pi
� E(pþ Δpi)� E(p)

Δpi
, (18)

where i indexes the parameters we index over and ranges from 0 to
d0 � 1.

The computation time for each gradient step is

Gradient Time per Step ¼ RCWAtime � d0

¼ 0:1� 5 ¼ 0:5 s: (19)

For 100 iterations, the total computation time is

Time at Query ¼ 0:1� 100 ¼ 10 s: (20)

While gradient descent is faster than a full grid search, the
finite difference approximation for gradients still requires multiple
RCWA simulations per iteration, making it very computationally
expensive (Table II).

V. OUR METHOD

We performed RCWA and machine learning analysis using
proprietary software (NanoDiffract, Onto Innovation Inc.,
Wilmington, MA). While exact algorithm details are confidential,

TABLE II. Gradient descent for parameter optimization.

Require: Initial parameter estimates p0, learning rate η, stopping
condition ε
1: k 0
2: repeat
3: Compute the gradient using (18): ∇E(pk)
4: Update parameters: pkþ1  pk � η∇E(pk)
5: k kþ 1
6: until j∇E(pk)j , ε
7: p�  pk
8: return p�
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the following is a description of what one could perform to achieve
similar results. The key idea is to maintain the notion of gradient
descending on input parameters but replace the naïvely slow gradi-
ent calculation with one that is faster by displacing RCWA.

At a high level, one could replace the computationally expen-
sive RCWA simulations with an analytical form using trained
neural networks. The neural network, once trained, can rapidly
compute the Mueller matrix spectra and their gradients, enabling
efficient optimization.

The gradient descent optimization process involves iteratively
updating the parameter estimates to minimize the error between
the simulated and experimental spectra. The update is the same as
(17) but instead of expensively calculating the gradient with finite-
difference, replacing RCWA with an analytical form allows us to
calculate the gradient with the chain rule (which is made rapid
with backpropagation)

@E
@pi
¼ @E

@M
� � � @M

@pi
: (21)

To replace RCWA with an analytical form, we train a neural
network to emulate the RCWA simulations. The neural network
function fω(p) maps the input parameters p to the Mueller matrix
spectra M,

M ¼ fω(p): (22)

Many flavors of a neural net will work, but we suspect a
simple one will work well. The multilayer perceptron consists of
multiple layers with weight matrices W, which consist of unique
ω0s and nonlinear activation functions σ,

M ¼ fω(p) ¼ σ(WLσ(WL�1 � � � σ(W1p) � � � )): (23)

To train the neural network, one can generate training data
with an input–output form defined by (22) using RCWA simula-
tions for various parameter sets. The loss function for training
could be the mean squared error (MSE) between the
RCWA-generated spectra MRCWA and the neural network-
predicted spectra MNN,

Loss ¼ 1
N

XN
n¼1

MRCWA(pn)�MNN(pn)
� �2

, (24)

where N is the number of training samples. The trained neural
network can then be used to compute the spectra and their gradi-
ents efficiently.

The workflow for parameter estimation from experimental
spectra using the trained neural network is summarized in
Table III.

This method significantly reduces the computation time com-
pared to traditional RCWA-based approaches, almost entirely
because we replace the finite-difference gradient calculation with
one that is analytical by approximating RCWA with a neural
network, making it feasible for real-time parameter estimation and
in-line process adjustments.

The precomputation time for our method involves generating
RCWA data and training the neural network. Given RCWA data gen-
eration takes around 28 h like in (13), and neural network training
takes approximately 6 h; the total pre-computation time is

Precomputation Time ¼ 28 hþ 6 h ¼ 34 h: (25)

The time at query, which involves computing the predicted
spectra and their gradients using the trained neural network, is sig-
nificantly reduced. Assuming the gradient computation per step

TABLE III. Neural network-driven nondestructive characterization.

Require: Physical model of sample, free parameter grid-spacing,
initial parameter estimates p0, learning rate η, stopping condition ε
1: Capture experimental MMSE spectra from the sample
2: Generate RCWA data using physical model and free parameters
3: Train the neural network to approximate RCWA given this data
4: Freeze the weights in the network
5: k 0
6: repeat
7: Compute the predicted spectra M ¼ fω(pk) using the neural
network
8: Compute the gradient: ∇E(pk) ¼ @E

@M
� @M
@pi

9: Update parameters: pkþ1  pk � η∇E(pk)
10: k kþ 1
11: until j∇E(pk)j , ε
12: p�  pk
13: return p�

FIG. 6. Full wafer tilt map illustrating the variations in tilt across the entire wafer
surface. We measured tilt at 30 208 different locations. Total time was 11 h and
26 min, yielding an average tilt measurement time of approximately 1 s. Blue
regions (top of the map) indicate areas of positive tilt, while red regions (bottom
of the map) indicate areas of negative tilt. The wafer boundary is labeled and
points where the uncertainty in tilt is above a threshold are clipped.
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takes 0.05 s and 100 iterations are required, the total time at query
is approximately:

Time at Query ¼ 0:05� 100 ¼ 5 s: (26)

VI. EXPERIMENTAL SETUP

A. Setup for measuring bar tilt across wafers

To measure the bar tilt across wafers, we employ MMSE. The
MMSE setup includes a light source, a polarizer, two dual-rotating
compensators (one in each arm), a sample stage, an analyzer, and a
detector. The light source generates a beam of known polarization,
which passes through the polarizer and compensator before

interacting with the sample. The reflected light is then analyzed to
determine the changes in its polarization state, providing detailed
information about the sample’s optical properties and structure.
The setup is a commercial setup, specifically an Atlas V from Onto
Innovation with RC2 ellipsometer integrated (from JA Woollam
Company).

The MMSE spectra are captured over a range of wavelengths,
from 200 to 650 nm, allowing us to construct the Mueller matrix
M(λ) for each measurement point on the wafer. The experimental
setup is carefully calibrated to ensure accurate and repeatable mea-
surements. The exact details of calibration are confidential, but we
generally follow the methods detailed in Section five of Chen.15

The spot size of the light beam is kept small (40� 40 μm) to
avoid mm-pitch Level 2 support structures [e.g., hexagonal support

FIG. 7. Experimental Mueller matrix spectra along the center-line of the wafer. We specifically focus on the difference between the upper-right and lower-left quadrant
matrix elements. We find that the spectra show variation across the wafer, corroborating our hypothesis that small structure variations lead to large spectra variations that
we can successfully fit with machine learning. Each curve is labeled by its measurement point’s vertical distance from the center of the wafer (see Fig. 8, vertical path start-
ing at wafer notch).
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structures in Fig. 4(b)]. The exact details of how this spot size is
achieved are confidential, but we use custom refractive, compound
lenses with multiple elements, like shaping components, that keep
the spot size circular and uniform over multiple wavelengths. We
use a conical geometry, where the incident light beam is parallel to
the CAT grating bars with a 65� angle of incidence relative to the
surface normal.

B. Data collection methods and validation using
small-angle x-ray scattering

To validate the MMSE measurements, we use small-angle
x-ray scattering (SAXS), a well-established technique for character-
izing nanostructures. SAXS, in principle, can provide high-
resolution data on the grating profile, including the bar tilt and
periodicity, by analyzing the scattering patterns of x rays as they
interact with the sample.

We follow the method described by Song,9 which involves
using a collimated x-ray beam directed at the sample. The scattered
x rays are detected at small angles relative to the incident beam,
and the diffracted orders are analyzed as a function of incidence
angle to extract bar tilt. The SAXS data serve as an accurate bench-
mark for validating the MMSE measurements.

By comparing the tilt angles obtained from MMSE and SAXS,
we can assess the consistency and precision of our MMSE-based

characterization method. The combination of MMSE and SAXS
provides a comprehensive approach for measuring and validating
bar tilt across HAR photonic wafers, offering both nondestructive
and high-resolution capabilities.

VII. RESULTS AND DISCUSSION

The contour plot in Fig. 6 shows the bar tilt determined by
MMSE across different points on the wafer. We show that we are
able to rapidly extract tilt measurements from any point on the
wafer.

To validate the accuracy of these measurements, we extract
measurements along a line on the wafer perpendicular to the
grating bars to compare with SAXS data [Fig. 8(a)]. Collecting
SAXS data is time consuming; so we do not compare SAXS data to
every point on the wafer, but instead, compare data along the
entire vertical length of the wafer to determine if we see alignment
at both small and large bar tilts. We follow the methods described
by Song,9 and plot the bar tilt determined by both MMSE and
SAXS [Fig. 8(b)]. The close agreement between the two sets of
measurements validates the accuracy of our method.

Figure 8 illustrates where exactly on the full wafer from Fig. 6
the points for SAXS were extracted. This visually shows our
machine learning method’s ability to measure grating bar tilt to the
accuracy of SAXS, across the length of the wafer.

FIG. 8. Illustration of where on the wafer points were extracted for SAXS measurement, with a comparison of tilt measurements between SAXS and MMSE. (a) CAT
grating wafer with sections labeled. MMSE data were taken on the entire wafer, before destructive cleaving for SAXS. Color coded circles correspond to sections used for
SAXS measurement. Note that sections span the vertical length of the wafer. (b) SAXS vs MMSE machine learning tilt measurements with sections labeled by their corre-
sponding color coded sections [circles at the bottom of the wafer in (a) correspond to circles at the left of the plot in (b), while those at the top of the wafer in (a) corre-
spond to those at the right of the plot in (b)]. The plot shows tilt (in degrees) as a function of vertical distance from the center of the wafer (mm). SAXS measurements are
represented by blue dots (those with higher variance), and MMSE measurements are represented by pink dots (those with lower variance), demonstrating the consistency
and accuracy of MMSE in capturing tilt variations. It is clear that alignment is maintained across the wafer, at various degrees of both positive and negative bar tilt.
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Our method essentially moves through critical-parameter-
space to attempt to fit the curves in Fig. 5 to those in Fig. 7. This
fitting is sped up by replacing the brute-force RCWA calculations
with a neural network. Because the neural network is an analytical
function, the gradient can be calculated rapidly with backpropaga-
tion in the critical-parameter-space after the weights are frozen.
Figure 5 illustrates RCWA-simulated Meuller matrix spectra for
upper-right and lower-left quadrant matrix element pairs. These
are those that are most sensitive to asymmetry, and they gave us a
first proof-of-concept that bar tilt could be accurately measured
across a wafer through its effect on these Meuller matrix spectra.
Figure 7 illustrates real, experimental spectra across a wafer. The
variation in these spectra across the wafer provided validation that
we could perform a fitting procedure that would attempt to match
the spectra from Fig. 5 (or, neural network approximations to the
spectra from Fig. 5 for increased speed) with the spectra from
Fig. 7 to effectively measure bar tilt. Interestingly, the curves in
Fig. 5 do not match those in Fig. 7 with extreme accuracy, but
our method still works well in recovering performance-critical
parameters (Fig. 8).

To gain further insight, we plot the experimental spectra
against our model’s spectra after convergence for two points along
the wafer in Fig. 9. This elucidates how close our machine learning
approximation of RCWA is able to recover the experimental data.
Note again that the two pairs of curves are not exactly the same,

but the accuracy of our bar tilt measurements is still high. This
implies that not all the variation in the experimental spectra is
needed to determine the bar tilt. The approximations made by
both RCWA and our neural net are enough to capture the bar tilt
variance across the wafer. We, therefore, expect that a similar gradi-
ent descent algorithm that operates in a basis in which the curves
are sparse, like the Fourier or Wavelet basis, would be sufficient.

For future work, we imagine we could Fourier transform the
experimental spectra and pass them through a low-pass filter to
remove the high frequency components. We can also try passing
them iteratively through different band-pass filters to remove
certain frequency components. We can then inverse Fourier trans-
form back to the canonical basis, and see if our method is still able
to recover the bar tilt with similar accuracy. This may further vali-
date the hypothesis that only certain frequencies or components of
information in the experimental spectra are needed to recover
certain critical parameters. Determining which parts of the spectra
are most important for measuring different structure parameters
may help guide measurement techniques or machine learning
architectures for rapid measurement.

Our machine learning approach, using a trained neural network
to replace RCWA simulations, is not only accurate, but also signifi-
cantly improves the speed of the gradient computation. Gradient
computation is the bottleneck in the gradient descent fitting proce-
dure; so replacing RCWA with an analytical form through a neural

FIG. 9. Comparison between experimental spectra and RCWA emulating neural network convergence after running gradient descent optimization. The red curves (the
lighter pair) represent a point at the center of the wafer and the purple curves (the darker pair) represent a point at 50 mm north of the center of the wafer. The solid
curves are the experimental spectra and the dotted curves are those after convergence.
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network, and still being able to measure critical parameters by freez-
ing network weights, is the key addition of our paper.

As shown in Table IV, which summarizes the approximate
precomputation times and query times for all methods including
ours, the gradient computation time per step using the neural
network is reduced to 0.05 s, making the total computation time
for 100 iterations approximately 5 s. This is a substantial improve-
ment over traditional methods, which can take several minutes or
up to a day. The accuracy of the machine learning approach is val-
idated by its close agreement with the SAXS-determined tilt. The
current approach focuses on a reduced parameter space to ensure
tractability. However, our method can be extended to higher-
dimensional parameter spaces. Future work can explore including
multiple parameters like sidewall roughness and material compo-
sition. It could also be used as a sensor in a control algorithm to
adjust fabrication parameters in real-time to nudge these
performance-critical structure parameters to their optimal values.

VIII. CONCLUSION

Our method is not only accurate in determining bar-tilt, but
also fast. By replacing the standard finite-difference gradient calcu-
lation with one that is analytical, we are able to speed up the tradi-
tional bottleneck in RCWA-based approaches to measurement. The
main addition of our paper is freezing the network weights and
using gradient descent on the input space after training the
network, along with experimental validation. While standard
methods using Meuller matrix ellipsometry surpass SAXS in their
non-destructiveness and speed, they are still too slow for potential
feedback control of fabrication parameters because they rely on
brute-force RCWA for their fitting procedures. This paper could
open the door to the development of robust control algorithms
that adjust fabrication parameters in response to measurement.
Control algorithms need fast feedback sensors; otherwise, the
latency between measurement and reality is too high for accurate
control of critical-structure parameters. We foresee future work
using our method to develop such control algorithms to not only
monitor but also control fabrication processes in close to real time.
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TABLE IV. Table that summarizes notional computation time estimates of each of the prior methods compared to our method. These are back of the envelope calculations that
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accuracy.

Method Time scaling equation Precomputation time Time at query

Our method 1
N

PN
n¼1 MRCWA(pn)�MNN(pn)

� �2
30 h 5 s

RCWA with finite difference 0.1 × d0 RCWAtime × 100 10 s
Library search 0.1 × 10d

0
28 h 17 min

Naïve grid search 0.1 × 10d
0

0 28 h
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Innovation. The latter dataset is available from the corresponding
author upon reasonable request.
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