
Image Grating Metrology

Using a Fresnel Zone Plate

by

Chulmin Joo

B.S. Aerospace Engineering, Korea Advanced Institute of Science and
Technology (1998)

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

Master of Science in Mechanical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2003

c° Massachusetts Institute of Technology 2003. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Mechanical Engineering

August 18, 2003

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mark L. Schattenburg

Principal Research Scientist
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ain A. Sonin

Chairman, Department Committee on Graduate Students



2



Image Grating Metrology

Using a Fresnel Zone Plate

by

Chulmin Joo

Submitted to the Department of Mechanical Engineering
on August 18, 2003, in partial fulfillment of the

requirements for the degree of
Master of Science in Mechanical Engineering

Abstract

Scanning-beam interference lithography (SBIL) is a novel concept for nanometer-
accurate grating fabrication. It can produce gratings with nanometer phase accuracy
over large area by scanning a photoresist-coated substrate under phase-locked image
grating. For the successful implementation of the SBIL, it is crucial to measure the
spatial period, phase, and distortion of the image grating accurately, since it enables
the precise stitching of subsequent scans.
This thesis describes the efforts to develop an image grating metrology that is

capable of measuring a wide range of image periods, regardless of changes in grat-
ing orientation. In order to satisfy the conditions, the use of a Fresnel zone plate is
proposed. The Fresnel zone plate is a circularly symmetric diffraction grating that
contains a wide range of spatial frequencies. The work begins with a basic under-
standing of the zone plate, followed by the physics of the image metrology. Closed
mathematical solution is obtained to describe the diffraction pattern of incident plane
waves by a Fresnel zone plate. For a given zone plate, a range of image periods that
can be measured is also investigated. The question regarding to contrast variation of
optical power by varying image period is also discussed.
The detailed theoretical analysis is followed by the experiments designed and

performed to verify the findings. Period measurements are conducted in two cases:
homodyne and heterodyne measurements. In the homodyne case, two different im-
age periods are measured using the same amplitude zone plate. In the heterodyne
measurement, the zone plate is installed in the current SBIL prototype system, the
Nanoruler, and is used to measure the period of the image grating with fringes that
moves at frequency difference between two beams. The contrast variation is also
verified by the experiment.
With the two conditions for image metrology to satisfy: immune to grating orien-

tations and capability of measuring a wide range of periods, the use of a zone plate
would be an excellent choice. However, one should be careful to use a properly de-
signed zone plate such that the image period to be measured is within the range of
high contrast for a given zone plate.

3



Thesis Supervisor: Mark L. Schattenburg
Title: Principal Research Scientist

4



Acknowledgments

Firstly, I wish to thank my advisor, Dr. Schattenburg, for giving me a chance to

work at the MIT Space Nanotechnology Laboratory. His strong physics and engineer-

ing intuitions always surprise me, and his incessant encouragement and optimistic

attitude motivate me. Dr. Heilmann has been always kind to discuss my ideas and

questions, and review my mathematical formulations. A lot of times, he enlightened

me with his profound knowledge on physics. Dr. Pati was generous in sharing his

optics knowledge and skills with me.

I have bugged Carl Chen and Paul Konkola quite often with a lot of stupid ques-

tions. Carl has always kindly answered my questions, and even greeted me with

a good sense of humor. I promise him to buy a big Korean meal, and bring him

to a Korean dance club in Seoul. Paul’s knowledge and experience on systems and

controls are invincible. I feel sorry that I lost the chance to learn more from them.

Congratulations on your graduations.

I have been lucky to have three great office mates for the past two years. Craig is

one of the most diligent and cheerful friends that I have. We have spent a lot of time

talking about our research and future career goals. Yanxia’s care and warmth to me

is really grateful since I joined our group. Without Juan’s expertise on electronics,

I couldn’t have finished the work. He has worked extremely hard on the Nanoruler,

and now he is essential for the implementation of the next-generation Nanoruler.

I am also grateful to Bob Fleming and Ed Murphy for their generous assistance on

many occasions, and Alexander Liddle and Erik H. Anderson at Lawrence Berkeley

National Laboratory for providing the zone plates for our research.

I appreciate Euiheon Chung of his encouragement and care at KAIST and MIT.

Ever since I met him, he has been a mentor, a role-model, and a good brother to me.

I sincerely hope that he has great days with his wife and new baby, Haewon. Soon-Jo

Chung is one of my best friends. He has shown me unconditional care, since he picked

me up at the airport. I wouldn’t forget the Miso soap that he made for me at my

first day in the U.S. My current roommates, Juhyun Park and Eun Suk Suh, are also

5



thankful to take care of me for one year. Ilyong Kim is expected to be a father soon.

Yoonsun Chung is taking a closer step to become an MIT PhD. I wish her the best

luck.

On a more personal note, I would like to thank Mihwa for her unflagging love and

support for me. She has provided me the courage and motivation to get through the

obstacles and difficulties here at MIT, especially a few months ago. I thank God for

giving me the chance to meet her in my life. Lastly, but mostly, I am forever indebted

to my parents and future parents-in-law. Without their generous love, guidance, and

support, I could not have survived here.

The work documented in this thesis was supported by DARPA under Grant No.

DAAG55-98-1-0130 and NASA under Grant No. NAG5-5271.

6



Contents

1 Introduction 17

1.1 Scanning-Beam Interference Lithography . . . . . . . . . . . . . . . . 18

1.2 Image Grating Metrology . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3 Use of Fresnel Zone Plate for Image Grating Metrology . . . . . . . . 24

2 Theory 27

2.1 Fresnel zone plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Diffraction of two plane waves by

a Fresnel zone plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Range of image grating period . . . . . . . . . . . . . . . . . . . . . . 38

2.4 Contrast fluctuations

vs. Image grating period . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Experiment 51

3.1 Homodyne period measurement . . . . . . . . . . . . . . . . . . . . . 53

3.1.1 Oscillation counting algorithm . . . . . . . . . . . . . . . . . . 54

3.1.2 Displacement measurement . . . . . . . . . . . . . . . . . . . 58

3.1.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . 59

3.2 Heterodyne period measurement . . . . . . . . . . . . . . . . . . . . . 63

3.2.1 Principle of operation . . . . . . . . . . . . . . . . . . . . . . . 64

3.2.2 Heterodyne fringe controller . . . . . . . . . . . . . . . . . . . 68

3.2.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7



3.2.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . 72

3.3 Contrast fluctuation measurement . . . . . . . . . . . . . . . . . . . . 74

3.3.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . 77

4 Conclusions 79

A Power estimation of moiré zone plates 83
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plate with varying image grating period is shown in (b). For reference,

three cases are indicated to show that the contrast takes maximum

values as the P (Λ) is either maximum or minimum. . . . . . . . . . . 48

11



2-14 Simulated optical power variations of the innermost zone of the first-
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Chapter 1

Introduction

Gratings with nanometer phase accuracy enable important advances in metrology,

electro-optics, spectroscopy, diffractive optics, and many other fields. Paul Konkola

and Carl Chen described several examples of the application of gratings [19], [22].

In particular, our perspective is to use the fiducial gratings as the metrological stan-

dards in semiconductor pattern placement metrology and grating-based displacement

measuring interferometry.

Interference lithography (IL) is one of the methods for fabricating gratings [2].

The IL method exposes the standing wave pattern formed by the interference of two

coherent laser beams onto a photoresist-coated substrate. The linear grating pattern

produced in space by the interference of two beams is defined as image grating, and

its nominal period is given by,

Λ =
λ

2 sin θ
(1.1)

where λ is the wavelength of light, and 2θ is the angle between the beams (Fig. 1-1).

In Figure 1-2, two types of ”traditional” interference lithography systems are depicted.

The configuration (a) uses the interference of two spherical waves generated by the

small pinhole. Since the spherical waves generated by a point-source-like pinhole

are spatially-coherent, the pattern can be regarded as very coherent. However, it

inherently has hyperbolic distortions that limits the size of linear grating. Juan
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Image grating

Left
beam

Right
beam

2θ

Figure 1-1: The standing wave patten produced by interference of two beams is
defined as an image grating.

Ferrera has analyzed the distortions in the interference lithography [3], and Chen has

demonstrated that the region of subnanometer nonlinear phase is less than 2.8 mm

in diameter for the MIT IL set up for 400 nm gratings [19]. The configuration (b)

exploits the interference of two plane waves generated by collimating lenses, but it

also has a problem in that optics defects (typically ∼ λ/10 over the full optics size)

distort the wavefronts of the beams, which consequently reduce the grating quality.

1.1 Scanning-Beam Interference Lithography

In order to resolve the limitations of the ”traditional” IL setup, Mark Schattenburg

has proposed the concept of Scanning-Beam Interference Lithography (SBIL) [1], and

its prototype tool named the Nanoruler is under development in our lab. Figure 1-3

depicts the concept of SBIL. The optics closely resemble those of ”traditional” IL,

but the image grating is much smaller than the total desired pattern size. By using

small laser beams, SBIL can minimize wavefront distortions caused by the optics, and

fabricate phase accurate gratings over large areas by scanning a photoresist-coated

substrate under the phase-locked image grating pattern. Figure 1-4 shows the SBIL

scan method. After one scan, the stage steps over by an integer number of grating
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Laser
Laser

Spherical waves cause 
hyperbolic distortion.

Optics figure & defects 
limit grating accuracy.

(a) (b)

Figure 1-2: Traditional interference lithography. Configuration (a) can fabricate large
gratings by using the interference pattern of two spherical waves. However, the inter-
ference pattern has hyperbolic distortions. Configuration (b) uses the interference of
two plane waves, but it also suffers from wavefront distortion caused by the optics.

periods and reverses direction for subsequent scans. Several important technological

breakthroughs have been made and reported during the development of the tool,

and they include beam alignment, image metrology, beam steering system, digital

heterodyne fringe locking, active vibration isolation, and so on. [4], [5], [6], [7].

1.2 Image Grating Metrology

To fabricate large area gratings, it is required that the stage steps over by an integer

number of image periods, and scans in the reverse direction. Thus, measuring image

grating period is crucial since it ensures the precise stitching of subsequent scans.

Furthermore, in-situ characterization of the spatial period, phase, and orientation of

the image grating is essential to improve SBIL performance.
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Figure 1-3: Scanning-beam interference lithography. SBIL can fabricate nanometer
phase accurate gratings over large areas by scanning a photoresist-coated substrate
under the phase-locked image grating.
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Figure 1-4: SBIL scan method. (a) To ensure accurate stitching of adjacent scans,
the stage steps over by an integer number of grating periods. (b) Gaussian intensity
envelope. (c) Beam overlapping to create a uniform exposure dose.
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Air-Bearing Stage

Substrate

(a) (b)

Image

Figure 1-5: General gratings fabricated by SBIL. It can be achieved by using the
capability of SBIL step-and-scan and varying orientation and incident angles of the
beams. (a) Linear chirped grating. (b) Curved chirped grating.

The next-generation Nanoruler should be also able to pattern linear or curved

chirped gratings (Figure. 1-5) [10]. These general patterns can be fabricated by

varying incident angles and orientation of the laser beams during the operation. The

application of the chirped gratings in our case is to use them as the reflection gratings

to diffract x-rays in the Constellation-X Spectroscopy X-ray Telescope [8], [9].

Previously, researchers have attempted to use detectors apertured with extremely

narrow slits to characterize image grating irradiance distributions [11]. However, the

amount of light leaking through narrow slits decreases dramatically as the sub-micron

domain approaches, and aligning the slit along the image grating lines is extremely

difficult.

Chen et al. [4] has also proposed using interferometry with a beamsplitter. Cur-

rently, a specially designed beamsplitter is set up to the Nanoruler. Figure 1-6 demon-

strates the principle of operation of the beamsplitter scheme. The beamsplitter is

mounted on the X-Y stage such that the interference of the reflected and transmitted

beams can be measured at a photo-detector. Scanning across the interference fringe

lines leads to relative optical path difference between two beams, which results in

sinusoidal intensity variation at the photo-detector. Therefore, image grating period
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D = Distance travelled
by the stage

Photo-detector

Beamsplitter
mounted on stage

Grating Period = D/N
N Fringes

Interference signal detected
as stage moves

Writing
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L R
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Figure 1-6: Image grating period measurement using a beamsplitter. The beams
interfere at the photo-detector, and the interference signal changes by scanning the
beamsplitter.

L R L R L R

Distorted beamsplitter Rotating beams Varying image period

(a) (b) (c)

Figure 1-7: Limitations of the beamsplitter scheme.
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Metrology grating

CCD~ 2 mm

Beam
pickoff

0-order reflected
-1-order back-diffracted

Image grating

Figure 1-8: SBIL wavefront metrology. A metrology grating with an ideal linear
spatial phase is used under the Littrow condition. The reflected and back-diffracted
beams interfere at a CCD camera.

can be obtained directly by dividing the displacement traveled by the beamsplitter

by the number of oscillations measured at the photo-detector. However, it has several

limitations, though it proves very effective at measuring the spatial period and phase

of the image grating.

Any distortion in the beamsplitter leads to distortions of the wavefronts of each

beam, which consequently result in an inaccurate measurement of image grating char-

acteristics. Also, if the two beams rotate in order to vary grating line orientation,

the beamsplitter scheme cannot be used because the transmitted and the reflected

beams are no longer overlapped. The range in which the beamsplitter can be used is

inherently limited. If incident angles vary during the operation, and become too large

or too small, the overlapped beams will no longer be incident on the photo-detector

unless the photo-detector is moved.

In order to accurately measure the nonlinear phase distortions in the image grat-

ing, the current Nanoruler exploits moiré-based interferometry using a metrology

grating. The metrology grating is placed on the vacuum chuck, and it is used under

the Littrow condition, where the zeroth-order beam from the left arm coincides with

the -1st order back-diffracted beam from the right arm (Fig. 1-8). The beams in-
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terfere and produce an interferogram that gets recorded by a charge-coupled-device

(CCD) camera. Chen designed and implemented the wavefront metrology, and its

detailed description can be found in Ref. [19].

1.3 Use of Fresnel Zone Plate for Image Grating

Metrology

I propose to analyze a novel image grating metrology that exploits unique properties

of a Fresnel zone plate. A Fresnel zone plate is a circularly symmetric diffractive

structure that contains a wide range of spatial frequencies. Its axial symmetry enables

us to characterize image gratings regardless of changes in grating line orientation. A

broad range of image grating periods can also be measured due to the chirped feature

of a Fresnel zone plate. Furthermore, a Fresnel zone plate can be manufactured

with small form-factor. Its typical size is on the order of ∼200 µm in diameter.

Namely, image grating characterization on a small size basis is possible. Indeed, the

beamsplitter scheme discussed in the previous section essentially characterizes image

gratings based on the averaged optical power over the entire image grating patch.

However, the Fresnel zone plate scheme uses the optical power transmitted through

the zone plate, so it can characterize an image grating based on a size on the same

order of the zone plate.

This thesis consists of two parts: theory and experiment. In Chapter 2, I present

the theoretical studies of image grating metrology using a Fresnel zone plate. Begin-

ning with the basic understanding of the principle of the zone plate, diffraction of

plane waves by a zone plate, the range of image periods that can be measured by a

zone plate are discussed. Furthermore, in order to understand the effects of varying

image period on the performance of the zone plate scheme, the optical power contrast

variation is also studied. Throughout the analysis, scalar diffraction theory is used,

and the incident waves are assumed to be coherent unit-amplitude plane waves.

Based on the analysis, three experiments are designed and conducted. In a ho-
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modyne period measurement, a modified Mach-Zehnder interferometry has been de-

signed, and image grating periods have been measured for two different incident

angles. A heterodyne experiment has also been designed and performed. The image

grating metrology is setup on the Nanoruler to measure image grating period, with

fringes moving at frequency difference of two beams. The measured period is com-

pared with that obtained by the beamsplitter scheme. Lastly, contrast variation is

measured using the same set up as the homodyne period measurement.
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Chapter 2

Theory

2.1 Fresnel zone plate

The Fresnel zone plate is a circularly symmetric diffraction grating composed of alter-

nating opaque and transparent zones. Under plane wave illumination, the Fresnel zone

plate diffracts the incident wave and focuses diffracted waves to different locations,

or different focal points. The first-order diffraction waves, which have the highest

intensity except for the zeroth-order plane wave, are focused to a point referred as

the primary or the first-order focal point. Consider a circular grating illustrated in

Fig. 2-1. If one draws a right triangle that has the primary focal length f as one side

and the radius of any zone rn as a second side, one can easily prove that

f2 + r2n =

Ã
f +

nλ

2

!2
, (2.1)

for constructive interference in the first-order to occur at the point f [12]. Upon

expansion and consolidation of like terms, Equation (2.1) becomes

r2n = nλf +
n2λ2

4
. (2.2)

The term n2λ2/4 represents spherical aberration, which can be ignored for f À nλ/2.

Then, Equation (2.2) simplifies to
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f
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f

FF'

Figure 2-1: The Fresnel zone plate is a circularly symmetric diffraction grating com-
posed of alternating opaque and transparent zones. It is designed such that its
diffracted waves are focused to multiple focal points. In the Figure, the -1st order
diffraction waves are focused to the primary or the first-order focal point F .

rn '
q
nλf, (2.3)

or

r2n ' nλf (2.4)

showing that the first-order focus is achieved as successive zones increase in radius

by
√
n, providing the desired prescription by which the radial grating period must

decrease in order to provide common focus. The earliest known record regarding

the demonstration of focusing light with alternatively opaque Fresnel zones is that of

Lord Rayleigh in 1871 [13].

Equation (2.4) reveals that a Fresnel zone plate can be thought as a typical linear

grating if it is expressed as a function of r2. Figure 2-2 depicts the transmittance of

a Fresnel zone plate denoted by t(r2). The t(r2) is a square wave with a period 2λf .

It can thus be expressed as a Fourier series by
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Figure 2-2: r2n = nλf . A Fresnel zone plate can be regarded as a square wave profile
with a period of 2λf , if it is expressed as a function of r2. Therefore, it can be
expressed as a Fourier series.

t(r2) =
∞X

n=−∞
An exp

Ã
̇nπ

r2

λf

!
. (2.5)

Here,

An =
sin(nπ/2)

nπ
, (2.6)

and A0 = 1/2 by L’Hopital’s rule [14].

If one expands Eqn. (2.5), it becomes

t(r2) = · · ·+

converging spherical wavez }| {
A−3 exp

Ã
−̇π r2

λ(f/3)

!
+

converging spherical wavez }| {
A−1 exp

Ã
−̇π r

2

λf

!

+
1

2|{z}
plane wave

+ A1 exp

Ã
̇π
r2

λf

!
| {z }

diverging spherical wave

+ A3 exp

Ã
̇π

r2

λ(f/3)

!
| {z }

diverging spherical wave

+ · · · . (2.7)

As indicated, the transmittance of a Fresnel zone plate can be regarded as a planar

section of the superposition of one plane wave and multiple converging and diverging

spherical waves with different focal points (Fig. 2-3). Each term in Eqn. (2.7) has

different intensity given by
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Figure 2-3: The Fresnel zone plate is represented as a superposition of multiple con-
verging and diverging spherical waves with different focal points. In the Figure, only
the ±1st and the ±3rd order spherical waves are shown for clarity.

In = |An|2 I0, (2.8)

where I0 represents the incident intensity. The ratio of the intensity of the nth order

diffraction wave to the incident intenstiy is defined as the diffraction efficiency, and

it is given by

ηn =


0.25 n = 0
1/n2π2 n odd
0 n even

(2.9)

for a transmission Fresnel zone plate with 50% duty cycle. In other words, 25% of

the incident intensity is in the 0th order, approximately 10% is diffracted into each

of the ±1st orders, and so forth, whereas the Fresnel zone plate itself absorbs 50% of
the incident intensity.
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2.2 Diffraction of two plane waves by

a Fresnel zone plate

ξ x'

y'

z

η

Zone plate

Image grating

Superposition of 
diffracted patterns

Superposition between
image grating and zone plate

Two plane waves ?

Input plane
Observation
plane

Figure 2-4: Diffraction geometry of a Fresnel zone plate and two plane waves. Two
plane waves are incident on the input plane defined by (ξ, η), and diffracted by the
Fresnel zone plate.

In order to understand the physics of image grating metrology using a Fresnel zone

plate, it is necessary to study the diffraction of an image grating by a Fresnel zone

plate and to find the relationship between image grating characteristics and the op-

tical power of the diffraction pattern in the observation plane. Previously, I reported

diffraction of an image grating by a Fresnel zone plate using the Fraunhofer diffrac-

tion approximation, which is valid for the far-field diffraction [17]. Here, I present the

mathematical analysis in more general form by using the Fresnel diffraction approx-

imation that can also be applicable for the near-field diffraction [15]. Moreover, the

closed solution for the diffraction pattern in the observation plane is obtained.

Consider two coherent unit-amplitude plane waves incident on a Fresnel zone plate

(Fig. 2-4). The amplitude transmittance functions of two plane waves are given by
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f1(ξ, η) = exp
µ
−̇2π

λ
sin θ1ξ

¶
, (2.10)

f2(ξ, η) = exp
µ
̇
2π

λ
sin θ2ξ

¶
, (2.11)

where λ is the wavelength of light, θ1 and θ2 are the incident angles of two plane waves

relative to the z-axis. The time dependent factor, exp(−̇ωt), has been dropped for
convenience.

η

Λ

ξ

Image grating

Zone plate

Λ

ε

y

x

Figure 2-5: The image grating and the Fresnel zone plate in the input planes, (ξ, η)
and (x, y). The image grating is phase-locked to the (ξ, η) plane, and the Fresnel zone
plate is centered in the (x, y) plane. The (x, y) plane is displaced by ε relative to the
(ξ, η) plane along the x axis.

In the (ξ, η) plane, an image grating is produced by the interference of two plane

waves, and its irradiance is evaluated as

Ig(ξ, η) = 2 + 2 cos
µ
2π

Λ
ξ
¶

(2.12)

where

Λ =
λ

sin θ1 + sin θ2
.
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Hence, the image grating has a period Λ in the (ξ, η) plane.

I also define the (x, y) plane at which the Fresnel zone plate is centered, and the

two plane waves can then be expressed in the (x, y) plane as

f1(x, y) = exp
µ
−̇2π

λ
sin θ1(x+ ε)

¶
, (2.13)

f2(x, y) = exp
µ
̇
2π

λ
sin θ2(x+ ε)

¶
, (2.14)

where ε refers to the displacement of the y axis of the plane (x, y) relative to the η

axis of the plane (ξ, η) (Fig. 2-5).

As discussed earlier, the amplitude transmittance of a Fresnel zone plate is ex-

pressed as

t(x, y) =
∞X

n=−∞
An exp

Ã
̇nπ

x2 + y2

ρ2

!
, (2.15)

where ρ is a constant and equal to the radius of the first (or innermost) zone for a

conventional Fresnel zone plate.

Two plane waves incident upon the Fresnel zone plate are diffracted and superim-

posed on the (x0, y0) plane that is parallel to the (x, y) plane and at normal distance

z from it.

The free propagation of the amplitude transmittance on the (x, y) plane through

the distance z can be studied in several ways [15]. Here, I use the classical approach

based on the Huygens-Fresnel principle. Using the paraxial approximation, the clas-

sical form of the Fresnel diffraction equation is given by

E(x0, y0) =
exp(̇kz) exp

³
̇k
2z
(x02 + y02)

´
̇λz

×Z Z ∞
−∞
t(x, y){f1(x, y) + f2(x, y)} exp

Ã
̇k

2z
(x2 + y2)

!
exp

µ
−̇2π

λz
(xx0 + yy0)

¶
dxdy

.(2.16)

33



Here, k is the wave number defined by 2π/λ. Equation (2.16) can be expressed as

E(x0, y0) =
exp(̇kz) exp

³
̇k
2z
(x02 + y02)

´
̇λz

×Z Z ∞
−∞
u(x, y){f1(x, y) + f2(x, y)} exp

µ
−̇2π

λz
(xx0 + yy0)

¶
dxdy, (2.17)

where

u(x, y) = t(x, y)× exp
Ã
̇k

2z
(x2 + y2)

!

= exp

Ã
̇k

2z
(x2 + y2)

!
×

∞X
n=−∞

An exp

Ã
̇nπ

x2 + y2

ρ2

!

=
∞X

n=−∞
An exp

Ã
̇π(

1

λz
+
n

ρ2
)(x2 + y2)

!
. (2.18)

Aside from multiplicative phase factors preceding the integral, Equation (2.17) is

simply the Fourier transform of u(x, y)(f1(x, y) + f2(x, y)), evaluated at frequencies

(x0/λz, y0/λz). Let F denotes the Fourier transform. Then, Equation (2.17) can be

expressed as

E(x0, y0) =
exp(̇kz) exp

³
̇k
2z
(x02 + y02)

´
̇λz

[F{f1(x, y)}+ F{f2(x, y)}]⊗ F{u(x, y)}.
(2.19)

Here, the symbol ⊗ represents convolution operator. Using

F{f1(x, y)} = exp
µ
−̇2π

λ
sin θ1ε

¶
δ

Ã
x0

λz
− sin θ1

λ
,
y0

λz

!
,

F{f2(x, y)} = exp
µ
̇
2π

λ
sin θ2ε

¶
δ

Ã
x0

λz
+
sin θ2
λ
,
y0

λz

!
,
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F{u(x, y)} =
∞X

n=−∞

̇An
1/λz + n/ρ2

exp

" −̇π
1/λz + n/ρ2

Ã
(
x0

λz
)2 + (

y0

λz
)2
!#
,

where δ(x0, y0) represents a two-dimensional Dirac delta function, Equation (2.17) is

re-expressed as,

E(r) =
exp(̇kz) exp

³
̇k
2z
(x02 + y02)

´
̇λz

×(
g1(r) exp

Ã
−̇2π sin θ1

λ
ε

!
+ g2(r) exp

Ã
̇2π

sin θ2
λ

ε

!)
(2.20)

where

r = (x0, y0),

g1(r) =
∞X

m=−∞

̇Am
1/λz +m/ρ2

exp

" −̇π
λz +m(λz/ρ)2

|r− r1|2
#
,

g2(r) =
∞X

n=−∞

̇An
1/λz + n/ρ2

exp

" −̇π
λz + n(λz/ρ)2

|r− r2|2
#
,

r1 = (z sin θ1, 0),

r2 = (−z sin θ2, 0).

Then, the intensity distribution across the (x0, y0) plane is given by
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I(r) = E(r)E∗(r) =
1

(λz)2
[g1(r)

2 + g2(r)
2 + 2 cos(

2π

Λ
ε)g1(r)g2(r)]. (2.21)

The tramsmittance functions of g1(r) and g2(r) are similar to that of a Fresnel zone

plate, so their focal lengths can be obtained as

Fm =
mλz2

ρ2
, (2.22)

assuming z À ρ. For a conventional zone plate that has ρ2 = λf , Equation (2.22)

becomes

Fm =
mz2

f
. (2.23)

Equation (2.21) represents the interference irradiance distribution in the obser-

vation plane composed of two diffraction patterns of the Fresnel zone plate under

illumination by two plane waves and the superposition of these patterns modulated

by a periodic function of ε. The two diffraction patterns denoted by g1(r)
2 and

g2(r)
2 will be called diffraction zone plates, and the third term are called moiré zone

plates. The moiré zone plates are formed by the interference of two diffraction zone

plates. They have multiple orders depending on the combination of m and n, and

the first-order which has the highest irradiance, is located between the centers of two

diffraction zone plates, g1(r)
2 and g2(r)

2. If g1(r)
2 and g2(r)

2 are located with a small

separation of their centers, the interference patterns are dominated by linear fringes,

not the moiré zone plates [16].

Let us examine the relationship of the irradiance across the (x0, y0) plane and the

image grating characteristics. If intensity given by Eqn. (2.21) is integrated over

a sample area on the (x0, y0) plane, the optical power is obtained and it is a cosine

function of ε. The ε refers to the displacement of the Fresnel zone plate relative to

an image grating that is phase-locked to (ξ, η) plane. In other words, the optical

power measured over the (x0, y0) plane is a periodic function of the displacement of
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(a) (b)

Figure 2-6: Image grating metrology using a Fresnel zone plate: (a) Image grating
period measurement and (b) Image grating mapping

the Fresnel zone plate, and it has the same period as the image grating. Therefore,

by scanning the Fresnel zone plate across the image grating, the image grating period

can be obtained through the observation of the changes in optical power.

The phase of an image in the (ξ, η) plane is related to the image period by

Λ(ξ, η) =
2π¯̄̄
~∇φ

¯̄̄ , (2.24)

where the symbol ~∇ denotes the del operator given by ~∇ = (∂/∂ξ, ∂/∂η). Therefore,
the distortion and local period of the image can be obtained directly with the knowl-

edge of the image phase. In our case, the phase of the image grating in the (ξ, η)

plane is

φ(ξ, η) =
2π

Λ
ξ, (2.25)

assuming two incident plane waves, and the phase of the optical power in the (x0, y0)

plane is given by

φ(ε) =
2π

Λ
ε. (2.26)

Thus, one can find that the phase of an image grating through the measurement

of the phase of the optical power by changing the relative phase between the two

37



beams. The distortion and orientation of an image grating can also be characterized

by scanning the Fresnel zone plate under the image grating in all directions (Fig.

2-6).
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Figure 2-7: Simulated diffraction pattern of two plane waves by a Fresnel zone plate:
λ=400 nm; z=10 cm; number of zones=12; minimum zone width=1 µm.

Figure 2-7 shows numerical simulation results for the irradiance distribution pro-

duced by an image grating transmitted through a Fresnel zone plate. Note that the

phase of the first-order moiré zone plates, shown in Fig. 2-7(a), changes by π as the

Fresnel zone plate is displaced by one half of the image grating period, as shown in

Fig. 2-7(b). The first-order moiré zone plate is the one that can be found by setting

m = n in the tramsittance function, g1(r)g2(r).

2.3 Range of image grating period

Suppose that a Fresnel zone plate is to be used for characterizing an image grating

with a period that can be varied during the operation. Obviously, the Fresnel zone

plate can be used as long as the interference of the diffraction waves occurs. Of

interest are the properties of the Fresnel zone plate that limit the range of image

grating periods that can be measured for the given Fresnel zone plate? In this section,

I study the diffraction of two plane waves by a Fresnel zone plate in a different way
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to obtain useful expressions that define the range of image grating period measurable

for a given zone plate.

As discussed, the image grating metrology using a Fresnel zone plate essentially

uses interference of diffracted waves by a Fresnel zone plate. The diffracted waves of

a plane wave are composed of the zeroth order plane wave propagating with the same

wave vector as the incident wave and the higher order spherical waves with different

focal points.

Figure 2-8 illustrates the diffraction of a plane wave by a Fresnel zone plate, where

only the ±1st order diffraction waves are shown. The zeroth and the higher order
diffraction waves are omitted for clarity. If the other plane wave is also illuminated

on the Fresnel zone plate to produce an image grating, it is diffracted, forming moiré

zone plates in the observation plane because of the interference of the spherical waves

(Fig. 2-9).

In order for the moiré zone plates to be formed with enough power for measure-

ment, the ±1st order spherical waves should be superimposed in the observation
plane. Figure 2-10 (a) depicts the case where the moiré zone plates can be observed.

However, as the incident angle of the plane waves increases and the image grating

period shrinks, the -1st order spherical waves will no longer be overlapped, as shown

in Fig. 2-10 (b). This condition can be found using the grating equation [18]. Assume

that a Fresnel zone plate has a minimum zone width of δr, and two plane waves have

an incident angle of θi. Since the outer zones of the Fresnel zone plate are very fine,

they can be regarded as a localized grating of period d = 2δr. Then, the -1st order

spherical waves will not interfere with that of the other plane wave if the first-order

diffraction angle is equal to the incident angle, or

d sin θ|θ=θi = λ. (2.27)

The minimum image grating period, for the incident angle found above, is obtained

as
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Figure 2-8: Diffraction of a plane wave by a Fresnel zone plate. The plane wave
is diffracted into multiple orders: the zeroth order plane wave and the higher order
spherical waves. In the Figure, the plane wave is incident on the Fresnel zone plate
with an incident angle. Only the ±1st spherical waves are shown for clarity.
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Figure 2-9: Diffraction of two plane waves by a Fresnel zone plate. Interference of two
plane waves produces an image grating in the (x, y) plane. The two plane waves are
diffracted by the Fresnel zone plate, and the interference of their multiple diffraction
orders are observed in the (x0, y0) plane. The moiré zone plates are formed in the
region indicated with the dashed lines. Only the ±1st spherical waves are shown for
clarity.
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Figure 2-10: Diffraction of two plane wave by a Fresnel zone plate. The -1st order
diffraction waves, which are converging spherical waves, are superimposed in the
observation plane, forming moiré zone plates (a), but as the incident angle is larger
and reaches to the N.A. of the Fresnel zone plate, they will no longer overlapped, as
shown in (b).

Λmin =
λ

2 sin θi
= δr. (2.28)

Hence, the Λmin depends on the minimum zone width, δr of the Fresnel zone plate.

The numerical aperture (N.A.) of a Fresnel zone plate is also evaluated as,

N.A. =
λ

2δr
= sin θi. (2.29)

It shows that the N.A. of a Fresnel zone plate defines the limiting incident angle for

the diffraction zone plates to be superimposed in the observation plane. Figure 2-11

shows the case where the incident angle is equal to the N.A. of the Fresnel zone plate.

The wavelength of the beam is 400 nm and the Fresnel zone plate has a minimum

zone width of 1 µm, which corresponds to 0.2 in numerical aperture. The moiré zone

plates are not seen because the diffraction zone plates are not superimposed.

Thus far, the analysis has been made based on two important assumptions: (1) the

paraxial approximation and (2) the beam has a shorter wavelength than the minimum

local period of a Fresnel zone plate. The assumption (1) says that the incident angle

denoted by θi is small, so that sin θi ' θi. The second assumption is that the incident
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Figure 2-11: Simulated the case in which incident angle equals to the N.A. of the
Fresnel zone plate. The diffraction zone plates are not overlapped, so the moiré zone
plates are not observed.

waves on a Fresnel zone plate are all diffracted by each zone. In fact, the second

assumption can be easily broken. Consider the case depicted in Fig. 2-12. Here, the

Fresnel zone plate is assumed to have smaller localized grating period of 2δr in the

outer zones such that

sin θ =
λ

2δr
− sin θi > 1. (2.30)

It is the case that the incident wave is reflected by the localized grating composed of

the outer zones. Still, the moiré zone plates can be formed by the interference of the

waves diffracted by the inner zones, which have larger period. However, optical power

decrease of the moiré zone plates is expected because some portion of the incident

beam is reflected, or the effective size of the Fresnel zone plate is decreased.
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Figure 2-12: Diffraction of two plane wave by a high N.A. Fresnel zone plate. The
incident wave is not diffracted by the local grating composed of the outer zones, since
its period is smaller than the wavelength of the incident wave. However, the moiré
zone plates are still formed because of the interference of the diffracted waves by the
inner zones.

2.4 Contrast fluctuations

vs. Image grating period

The Nanoruler, a prototype system of the SBIL, is expected to be capable of pat-

terning linear or curved chirped gratings. It can be achieved by varying the image

grating period and rotating the laser beams during the operation. Therefore, the

image grating metrology needs to be applicable for a wide range of grating periods,

regardless of changes in incident angle. To characterize an image grating accurately,

it is necessary to have sufficient contrast in optical power fluctuations because the

accurate measurement of the image grating characteristics critically depends on the

determination of signal properties, i.e., peaks and valleys. This section is dedicated

to examine the effects of varying image grating period on the capability of the image

grating metrology using a Fresnel zone plate in terms of contrast fluctuations.

Assume that the incident angles of two plane waves are the same, θ = θ1 = θ2, for

simplicity. Then, Equation (2.21) can be expressed as

I(r) =
1

(λz)2

h
g(r− r0)

2 + g(r+ r0)
2 + 2 cos(φ)g(r− r0)g(r+ r0)

i
, (2.31)
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where

g(r) =
∞X

n=−∞

̇An
1/λz + n/ρ2

exp

" −̇π
λz + n(λz/ρ)2

|r|2
#
,

r0 = (z sin θ, 0) = (
λz

2Λ
, 0),

and

φ =
2π

Λ
ε.

Here, Λ = λ/2 sin θ is used, and g(r) is a circularly symmetric chirped function similar

to the amplitude transmittance of the Fresnel zone plate.

If the intensity distribution given by Eqn. (2.31) is integrated over the innermost

zone of the first-order moiré zone plate indicated in Fig. 2-7, the power is evaluated

as

P (Λ) =
1

(λz)2

∙Z Z
A

n
g(r− r0)

2 + g(r+ r0)
2
o
dA+ 2

Z Z
A
g(r− r0)g(r+ r0)dA cosφ

¸
=

1

(λz)2
[DA(Λ) +NA(Λ) cosφ] , (2.32)

and the contrast can then be defined by

CA(Λ) =
¯̄̄̄
Pmax − Pmin
Pmax + Pmin

¯̄̄̄
=

¯̄̄̄
¯NA(Λ)DA(Λ)

¯̄̄̄
¯ . (2.33)

The innermost zone of the first-order moiré zone plate is used to calculate optical

power because it maximizes the signal contrast. Suppose that the innermost zone is

bright. If one increases the sample area to include the second zone that is dark, the

innermost zone will turn to be dark and the second zone will be bright as a Fresnel

zone plate moves by one half of the image grating period. The optical power is the

sum of intensity over the sample area, so one cannot expect significant changes in

optical power, though the Fresnel zone plate moves. The inclusion of more zones in
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the sample area will reduce the contrast of power fluctuations.

Note that the contrast is expressed as a function of image grating period, Λ, as

shown in Eqn. 3.28. It is unity if g(r− r0) = ±g(r+ r0) over the innermost zone of

the first-order moiré zone plate. However, since g(r) is a quadratic chirped function,

g(r− r0) cannot be equal to ±g(r− r0) over the region centered at the origin for

θ 6= 0, but they are mirror-symmetric relative to the z axis. Thus, the contrast

cannot be unity if the incident angle is not zero.

Since linear fringes dominate the interference pattern for small separation between

g(r− r0) and g(r+ r0), the separation is assumed to be large enough, so that the

moiré zone plates can be observed. Then, the sample region defined above covers

many outer zones of g(r− r0) and g(r+ r0), so it can be true that DA(Λ), essentially

a sum of the power of two diffraction patterns, is not much affected by the changes

in Λ. In other words, the in-and-out motion of the fine outer zones in the integral

region due to the changes in image grating period does not greatly affect DA(Λ) over

the range of Λ considered, so that

dDA(Λ)/dΛ

DA(Λ)
¿ 1. (2.34)

Hence, the contrast can be thought to be dependent only on NA(Λ). Some read-

ers might be interested in exact expressions for image grating periods at which the

contrast takes extreme values, i.e., maxima and minima. It must be true that

dCA(Λ)

dΛ
=

¯̄̄̄
¯̄ dNA(Λ)

dΛ
DA(Λ)−NA(Λ)dDA(Λ)

dΛ

DA(Λ)2

¯̄̄̄
¯̄ = 0, (2.35)

for the image grating periods where the contrast has extreme values.

Since the second term in the numerator of Eqn. (2.35) is negligible, and DA(Λ) cannot

be zero in the innermost zone of the first moiré zone plate, dNA(Λ)/dΛ = 0 is obtained.

To evaluate NA(Λ),

g(r− r0)g(r+ r0)
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=
∞X

m=−∞

̇Am
1/λz +m/ρ2

exp

" −̇π |r− r0|2
λz +m(λz/ρ)2

# ∞X
n=−∞

̇An
1/λz + n/ρ2

exp

" −̇π |r+ r0|2
λz + n(λz/ρ)2

#

= −
∞X

n=−∞

Ã
An

1/λz + n/ρ2

!2
exp

−̇2π
³
|r|2 + |r0|2

´
λz + n(λz/ρ)2

 .(2.36)

Here, m = n is used because the first order moiré zone plate centered at the origin is

being considered [16]. Then,

NA(Λ) =
Z Z

A
2g(r− r0)g(r+ r0)dA

= −2
Z Z

A


∞X

n=−∞

Ã
An

1/λz + n/ρ2

!2
exp

−̇2π
³
|r|2 + |r0|2

´
λz + n(λz/ρ)2

 dA
= −2

∞X
n=−∞

Ã
An

1/λz + n/ρ2

!2
exp

" −̇2π |r0|2
λz + n(λz/ρ)2

# Z Z
A
exp

" −̇2π |r|2
λz + n(λz/ρ)2

#
dA

=
∞X

n=−∞
Bn exp

" −̇2π |r0|2
λz + n(λz/ρ)2

#
, (2.37)

where

Bn = −2
Ã

An
1/λz + n/ρ2

!2 Z Z
A
exp

" −̇2π |r|2
λz + n(λz/ρ)2

#
dA.

Equation (2.37) can be further simplified as

NA(Λ) =
∞X

n=−∞
Bn exp

"−̇βn
Λ2

#
. (2.38)

using r0 = (λz/2Λ, 0), and

βn =
π

2 (1/λz + n/ρ2)
.

Equation (2.37) reveals that NA(Λ) is a chirped function of Λ for a given Fresnel

zone plate and the free-space propagation distance z. In other words, the contrast

is also a function of the free-space distance z and the properties of the Fresnel zone

plate such as the innermost zone radius ρ and the numerical aperture. High frequency

contrast fluctuations are predicted for small image grating periods and lower frequency
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Figure 2-13: Three components, N(Λ),D(Λ), and P (Λ) are shown in (a), and contrast
fluctuations of the innermost zone of the first-order moiré zone plate with varying
image grating period is shown in (b). For reference, three cases are indicated to show
that the contrast takes maximum values as the P (Λ) is either maximum or minimum.
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Figure 2-14: Simulated optical power variations of the innermost zone of the first-
order moiré zone plate as the relative phase of the diffraction zone plates changes.
The sample area has a radius of 1.5 mm. (a) Λ = 1.5735 µm, Contrast = 0.997, (b)
Λ = 1.5946 µm, Contrast = 0.004, (b) Λ = 1.6161 µm, Contrast = 0.991.
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fluctuations for large image grating periods.

The simulation confirms the prediction (Fig. 2-13). I used a beam with a wave-

length of 400 nm, and the Fresnel zone plate is assumed to have 14 zones and an

innermost zone radius of 8 µm. The free-space propagation distance is 10 cm. The

circular area with a radius of 1.5 mm in the observation plane (x0, y0) is used to

sample the innermost zone of the first-order moiré zone plate for power calculation.

As shown, D(Λ) doesn’t show significant power variations, whereas N(Λ) fluctuates

greatly by changes in image grating period. A lot of contrast fluctuations are observed

for small image grating periods. I indicated three cases in Fig. 2-13: two maxima and

one minimum. Note that the contrast takes maximum values when the power over

the sample region is either maximum or minimum. As for the contrast minimum, it

is easy to understand since the contrast takes a value of zero when the N(Λ) is zero.

Figure 2-14 clearly shows the relationship of optical power in the sample area and

the contrast. The three cases indicated in Fig. 2-13 are shown. The high contrast is

obtained if the optical power over the sample area is maximum or minimum as the

relative phase difference of diffraction zone plates is zero. If there are dark and bright

regions in the sample area, one cannot expect significant power fluctuations, though

the relative phase difference changes by π because the bright region will turn to be

dark and the dark one will be bright, not giving significant power variations than

before.
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Chapter 3

Experiment

In order for SBIL to succeed in fabricating large gratings with nanometer level phase

distortions, it is critical that the stage step over by an integer number of image periods

between subsequent scans. In the current Nanoruler setup, a specially designed rect-

angular beamsplitter is mounted on the stage to measure the image grating period to

the part-per-million (ppm) level (Fig. 3-1). However, the beamsplitter scheme cannot

be applicable when the beams rotate and vary incident angles, which is necessary for

the next-generation Nanoruler.

Using a Fresnel zone plate, image grating periods have been measured in a homo-

dyne and a heterodyne scheme. As for the homodyne case, a simple Mach-Zehnder

interferometry was set up using a HeNe laser (λ = 632.8 nm) and an amplitude Fresnel

zone plate. I measured the optical power transmitted through the amplitude Fresnel

zone plate as the zone plate moved under the image grating. In the heterodyne setup,

a phase zone plate was installed in the current Nanoruler that uses a UV laser (λ =

351.1 nm) and is configured to produce gratings of nominal period 400 nm. The image

grating period was obtained by the phase variations of the signal transmitted through

the zone plate. Contrast variations of optical power by changes in image periods has

also been demonstrated. Using the same experimental setup of the homodyne case

and a phase zone plate, contrast variation was measured.

The Fresnel zone plates used in the experiments were all fabricated by the Lawrence

Berkeley National Laboratory (LBNL) Nanowriter. The Nanowriter is a high resolu-
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Figure 3-1: Period measurement system of the Nanoruler. Two beams interfere at
the interface of the rectangular beamsplitter, and the mirror diverts the interference
signal to the position sensing detector.
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tion electron beam lithography tool, which has a placement fidelity of 5 nm in a 131

µm field [23]. It has a spot size of 5-8 nm, and for our experments, used a spot size

of 8 nm.

3.1 Homodyne period measurement

Photo-
detector

Zone plate 
mounted on stage

Laser beams

Lens

Signal detected as stage moves

Stage 
motion (D)

N = Ni + Nm + Nf

Grating Period, Λ = D/N

Nm

Ni Nf

Figure 3-2: Homodyne period measurement concept.

The homodyne interferometry method uses two coherent laser beams with the

same temporal frequency. Therefore, the interference pattern between two beams is a

standing wave pattern called an image grating, so, in ideal case, the image grating is

stabilized in the space. Figure 3-2 shows the concept of the homodyne image grating

period measurement. The zone plate moves across the interference fringe lines, so the

optical power transmitted through the zone plate varies sinusoidally with the same

period of the image grating period. Then, the image grating period can be derived

by

Λ =
D

N
, (3.1)

where D is the distance traveled by the stage, and N is the total number of oscilla-
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tions. Therefore, in the homodyne scheme, the accurate detection of the number of

oscillations and the measurement of the displacement of the zone plate are crucial for

accurate measurement of image period.

3.1.1 Oscillation counting algorithm

Vi

Vf

(tv, Vv)

(tp, Vp)

Ni

Nf

V

t

A

B

Figure 3-3: An example of optical power signal measured at a photodiode.

Figure 3-3 shows a schematic of the optical power measured at a photodiode as

the stage moves. It is different from that described in Ref. [19], which has a Gaussian

intensity envelope. The beamsplitter scheme results in a Gaussian intensity envelope,

since the transmitted and reflected beams become mis-aligned as the beamsplitter

moves across the image grating. However, in our case, it does not pose a problem

because the small zone plate moves near the centroid of the Gaussian-enveloped image

grating. The photodiode voltage readout before the stage motion is Vi, and the final

voltage, when the stage completes the motion, is represented by Vf . The number

of oscillations is the sum of three terms: the fractional number of oscillations at

the beginning (Ni) and the end (Nf), and the completed cycles Nm. In order to

accurately count the number of oscillations (N), the oscillation counting algorithm
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has been implemented using the MATLAB, and the relevant codes are included in

Appendix D. Chen also implemented the oscillation counting algorithm using the

LabView [19].

Peak threshold

Valley threshold

Vi

Vf

(tv, Vv)

(tp, Vp)
V

t

Figure 3-4: Signal and thresholds to detect peaks and valleys.

Figure 3-5 depicts three cases that may be observed at the output of a photodiode

during the period measurement. As illustrated, the number of completed cycles (Nm)

can be derived easily by the numbers of peaks (np) and valleys (nv) present in the

signal. To find the numbers of peaks and valleys, and their locations and values, I

define the thresholds as depicted in Fig. 3-4. If the signal begins below the threshold

value, exceed the threshold at some location, and then return to a value below, one

peak exists in that range. The location and value of the peak are obtained by fitting

the data in the range as a second order polynomial and taking its derivative to find

its location and value. In the same way, the location and value of the valleys are

found. The peak and valley detection procedure is implemented in PVdetector.m in

Appendix D.

The fractional number of oscillations is obtained using a sinusoidal function of t

to fit the signal in the beginning and the end. Assume a sine function defined by
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(I) np - nv = +1

(II) np - nv = -1

(III) np - nv = 0

Nm = nv

Nm = np

Nm = nv - 0.5

Figure 3-5: Three cases that may be observed at a photodiode. Based on the numbers
of peaks (np) and valleys (nv), the number of completed cycles, Nm, can be deduced.
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V (t) = A sin(Ct+D) +B. (3.2)

It has four unknowns, and they can be found using the mean values of the peaks and

valleys, and the initial (or final) peak or valley location and value. The coefficients A

and B are given by

A =
Vp − Vv
2

, (3.3)

B =
Vp + Vv
2

, (3.4)

where Vp and Vv are the mean peak and valley values, respectively, and the constants

C and D can also be found using the location and value of the initial (or final) peak

or valley. Then, the fractional number of oscillations are calculated by

Ni =
1

4
− 1

2π

¯̄̄̄
arcsin

µ
Vi −B
A

¶¯̄̄̄
, (3.5)

Nf =
1

4
− 1

2π

¯̄̄̄
arcsin

µ
Vf − B
A

¶¯̄̄̄
. (3.6)

Finally, the number of oscillations are obtained by summing Ni, Nf , and Nm.

Carl Chen has modeled the errors associated with the determination of the number

of oscillations [19]. Using his mathematical error models and knowing that the total

number of cycles N = Ni +Nm +Nf , the error variance is,

∆N2 = ∆N2
i +∆N

2
f . (3.7)

One can easily understand that ∆N2
m = 0, since there is no ambiguity in getting Nm

algorithmatically. If I use the notation ”∗” to denote either ”i” or ”f” , the ∆N2
∗ can

be expressed by differentiating Eqn. (3.5) or (3.6) with respect to V∗, A, and B:
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∆N2
∗ =

 ∆V∗

2πA
q
1− (V∗−B)2

A2

2 +
 ∆B

2πA
q
1− (V∗−B)2

A2

2

+

 (V∗ −B)∆A
2πA2

q
1− (V∗−B)2

A2

2 , (3.8)

where

∆B2 = ∆A2 =
µ
1

2
∆V 2p

¶2
+
µ
1

2
∆V 2v

¶2
. (3.9)

Equation 3.8 implies that the error in the fractional cycle determination is minimized

if V∗ = B, meaning that the initial and final voltage measurements should take

place as close as possible to the centerline of the intensity envelope, i.e., the DC level.

Furthermore, the error is minimized if the A is large, i.e., the signal has high contrast.

The small ∆A and ∆B also minimizes the error. The zone plate scheme is superior to

the beamsplitter scheme in that ∆A can be small if the zone plate moves near to the

centroid of the Gaussian intensity envelope, but it suffers from relatively low signal

contrast.

3.1.2 Displacement measurement

The displacement sensor should measure the relative displacement of the stage to the

phase-locked image. However, the image grating and the stage can move indepen-

dently and randomly due to several factors such as vibrations, temperature, and so

on. As will be shown later, in the homodyne experiment described here, a capacitance

gauge with an accuracy of ±16 nm is used without any environmental enclosure or

a fringe-locking control system. In the SBIL, the displacement traveled by the stage

is measured by heterodyne displacement measuring interferometers (DMIs) [20]. The

static positioning error of the SBIL stage along the x axis is reported as around 30

nm [21], [22]. However, the stage error is corrected in real-time by a heterodyne

fringe-locking system, which tries to minimize the image to stage motion.
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3.1.3 Experiment

The homodyne experimental setup is depicted in Figure 3-6. An amplitude Fresnel

zone plate is mounted on a translation stage that is driven by a New Focus Model

8302 picomotor. Figure 3-7 shows a scanning electron microscope (SEM) micrograph

of the Fresnel zone plate. The zone plate has 200 zones, a minimum zone width

of 207 nm, and a diameter of 127 µm. Due to the nondeterministic motion of the

picomotor, the displacement traveled by the stage is measured using a capacitance

gauge (ADETech., Model 4810) that has a linearity of ±0.05 % [24]. Two coherent

laser beams (λ = 632.8 nm) are incident on the Fresnel zone plate and diffracted to

form moiré zone plates on the lens. The lens is positioned to sample the first order

moiré zone plate and focus it onto a photodiode.

As the Fresnel zone plate is scanned, the optical power transmitted through the

zone plate is measured at the photodiode. The analog-to-digital (A/D) conversion is

handled by a National Instruments NI 6034E I/O board [25]. The capacitance gauge

is also connected to the A/D board for the easier calculation of the image grating

period. The experiment is carried out for incident angles of 20 degrees and 35 degrees

using the same zone plate to demonstrate its capability in measuring different image

grating periods.

3.1.4 Results and discussion

Thirty sets of period measurement were taken for each incident angle. Figure 3-8

shows signals sampled at the photodiode as the Fresnel zone plate was displaced for

an incident angle of 20 degrees. The sample rate is at 5 kHz. A lot of noise is present

primarily due to acoustics and excitations by the internal vibrations of the picomotor.

For accurate detection of oscillations, the signals were filtered using an FIR low-pass

filter (Kaiser Window) with a cutoff frequency of 10 Hz, a transition band of 15 Hz,

and ≥ 60 dB attenuation in the stop band. The FIR filter was used to have a linear
phase relationship between the raw and the filtered signals, and the Kaiser window is

known to optimize the trade-off between main lobe sharpness and sidelobe amplitude
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60



Figure 3-7: SEM micrograph of the amplitude Fresnel zone plate written by the LBNL
Nanowriter. It has 200 zones, a minimum zone width of 207 nm, and a diameter of
127 µm.

[?]. The filtered signal is also shown in Fig. 3-8. With the knowledge of number of

oscillations (N) and the distance traveled by the stage (D), the image grating periods

were calculated.

For reference, a protractor with a resolution of 1 degree was used to measure

incident angles. Based on the measured angle, the image grating periods are predicted

by

Λp =

Ã
λ

2 sin θ

!
θ=θi

±
¯̄̄̄
¯̄λ2
Ã
cos θ

2 sin2 θ

!
θ=θi

¯̄̄̄
¯̄∆θ, (3.10)

where θi is the angle of incidence, and ∆θ represents the angle measurement uncer-

tainty due to the limited resolution of the protractor. Using Eqn. 3.10, the image

grating period are predicted as 926±44 nm for an incident angle of 20 degrees and

552±14 nm for an incident angle of 35 degrees. From the period measurements, the

mean image grating periods of 911.8 nm and 541.1 nm were obtained, respectively.

The one-sigma repeatabilities were 1.1 nm and 0.9 nm for each case. The poor resolu-

tion of the angle measurement is a significant contributor to the discrepancy between

the predicted and the measured periods.
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The period measurement uncertainty involves several factors. In our case, the

period uncertainty is given by

∆Λ =
1

N0
∆D − D0

N2
0

∆N, (3.11)

where N0 and D0 are the measured total number of oscillations and the distance

traveled by the Fresnel zone plate, respectively. The ∆D and ∆N represent the un-

certainties regarding their measurements. As for the uncertainty of the displacement

measurement, the inaccuracy of the displacement sensor is dominant, compared to

the absolute accuracy of the analog-to-digital converter (ADC), which is around 3

nm. Notice that the uncertainties are proportional to 1/N0 or 1/N
2
0 , so it can be

reduced further by long travel of the translation stage, thereby increasing the number

of oscillations (N0).

Cosine errors in the alignment of the Fresnel zone plate, the displacement sensor,

and the interferometric optics also result in bias errors. The Fresnel zone plate has

been set to travel normal to the image grating lines within 0.5 mrad, which corre-

sponds to an uncertainty of ±0.6 nm and ±0.2 nm for each case. The one-degree

misalignment of the translation stage with the zone plate plane leads to an error of

0.015 % of the actual period.

Furthermore, the repeatability suffers from many error sources, including fringe

drift due to the change of refractive index, vibrations, and acoustics. Note that the

experiments have been performed without a properly designed low coefficient of ther-

mal expansion (CTE) metrology frame, a fringe-locking system, or an environmental

control.

3.2 Heterodyne period measurement

The interference of two coherent laser beams with different temporal frequencies pro-

duces an image grating with fringes that moves at their frequency difference. The

heterodyne scheme measures the phase of the image grating, and obtains its spatial

period by using the relation
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fx =
1

Λ
=
1

2π

∂φ

∂x
, (3.12)

where fx is the spatial frequency along the x axis, and φ is the spatial phase. Com-

pared to the homodyne case, the heterodyne detection offers better signal-to-noise

ratio, reduced sensitivity to differential amplitude variations, and less drift due to

1/f noise [28], [29]. Indeed, the optical power transmitted through the phase zone

plate installed in the SBIL is too low to use the homodyne scheme. However, the

heterodyne scheme allows measuring the spatial period of the image grating.

3.2.1 Principle of operation

Zone plate 
on stage

f0 f0+∆f0

Amplitude (R)

Phase (φ)

Reference  
input

Measurement  
input

Lock-In 
Amplifier

S1

S2

Figure 3-9: Heterodyne period measurement concept. The interference of two het-
erodyne beams generates a reference signal to the lock-in amplifier, and its frequency
shift caused by the zone plate scan is sampled and compared to the reference signal
of the lock-in amplifier.

Figure 3-9 shows the concept of heterodyne detection of image grating period.

Two beams with a frequency difference of ∆f0 are overlapped at the beamsplitter

interface, and propagate onto the detector (S1), which is connected to the external
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reference input of the lock-in amplifier. Then, the S1 measures the interference signal

between two beams, and its phase is given by

φ1 = 2π∆f0t+∆φ, (3.13)

where ∆φ represents the constant phase difference of the left and right beam. The

interference of two beams on the Fresnel zone plate produces an image grating moving

at their frequency difference, ∆f0. However, as the stage moves across the image

grating, the frequency shift is sampled at the detector (S2), and it is described by

φ2 = 2π∆f0t± 2π
Λ
vt+∆φ =

µ
2π∆f0 ± 2π

Λ
v
¶
t+∆φ, (3.14)

where v stands for the stage velocity, and the operator ± accounts the direction of

the stage relative to the moving image grating. The signal S2 is connected to the

measurement input of the lock-in amplifier.

The lock-in amplifier uses a phase-locked-loop (PLL) and the external reference

input to generate the reference signal. The PLL in the lock-in amplifier locks the

internal reference oscillator to this external reference, resulting in reference sine and

cosine waves at ∆f0 with a fixed phase shift of φr. Since the PLL actively tracks

the external reference, changes in the external reference frequency do not affect the

measurement.

The measurement signal is amplified and multiplied by the lock-in reference sig-

nals using phase-sensitive detectors (PSDs). Assume that the measurement signal is

represented as

Vsig = Vm sin
∙µ
2π∆f0 ± 2π

Λ
v
¶
t+∆φ

¸
, (3.15)

where Vm is the input signal amplitude. Then, the ouput of the PSD is simply the

product of reference signal and measurement signal. For one PSD,

V1 = VmVr sin
∙µ
2π∆f0 ± 2π

Λ
v
¶
t+∆φ

¸
sin [2π∆f0t+ φr]
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=
1

2
VmVr cos

∙
±2π
Λ
vt+∆φ− φr

¸
− 1
2
VmVr cos

∙µ
4π∆f0 ± 2π

Λ
v
¶
t+ φr +∆φ

¸
,

(3.16)

and, for the other PSD,

V2 = VmVr sin
∙µ
2π∆f0 ± 2π

Λ
v
¶
t+∆φ

¸
cos [2π∆f0t+ φr]

=
1

2
VmVr sin

∙
±2π
Λ
vt+∆φ− φr

¸
+
1

2
VmVr sin

∙µ
4π∆f0 ± 2π

Λ
v
¶
t+∆φ+ φr

¸
.

(3.17)

If those PSD outputs are passed through a low-pass filter, the high frequency AC

signals are removed. Then, the filtered signals are

X =
1

2
VmVr cos

∙
±2π
Λ
vt+∆φ− φr

¸
, (3.18)

Y =
1

2
VmVr sin

∙
±2π
Λ
vt+∆φ− φr

¸
, (3.19)

assuming ∆f0 À v/Λ. Now we have two outputs, and these two quantities represent

the signal as a vector relative to the lock-in reference oscillator. X is called the ”in-

phase” component and Y the ”quadrature” component. By computing the magnitude

(R) of the signal vector, the phase dependency is removed.

R =
√
X2 + Y 2 = VmVr/

√
2. (3.20)

Here, R measures the signal amplitude and does not depend on the phase between

the signal and lock-in reference. The phase of the signal vector is also calculated by

ϕ = arctan
µ
Y

X

¶
= ±2π

Λ
vt+∆φ− φr = ±2π

Λ
ε+∆φ− φr. (3.21)

Note that the image grating period can be obtained directly by taking derivative of the

phase output of the lock-in amplifier with respect to the time or the displacement,

66



P
ha

se
 

S
en

si
tiv

e 
D

et
ec

to
r

P
LL

IA B

Lo
w

 N
oi

se
D

iff
er

en
tia

l 
A

m
p

V
ol

ta
ge

C
ur

re
nt

50
/6

0 
H

z 
N

ot
ch

 
F

ilt
er

R
ef

er
en

ce
 In

S
in

e 
or

 T
T

L
P

ha
se

S
hi

fte
r

D
C

 G
ai

n
O

ffs
et

E
xp

an
d

G
ai

n

X
 O

ut

Y
 O

ut

D
is

cr
im

in
at

or

10
0/

12
0 

H
z 

N
ot

ch
F

ilt
er

90
˚ 

P
ha

se
S

hi
ft

P
ha

se
 

Lo
ck

ed
 

Lo
op

In
te

rn
al

 
O

sc
ill

at
or

Lo
w

 
P

as
s

F
ilt

er

D
C

 G
ai

n
O

ffs
et

E
xp

an
d

Lo
w

 
P

as
s

F
ilt

er

S
in

e 
O

ut

D
is

cr
im

in
at

or

T
T

L 
O

ut

R
 a

nd
 

Ø
 C

al
c

R Ø

P
ha

se
 

S
en

si
tiv

e 
D

et
ec

to
r

Figure 3-10: Functional block diagram of the lock-in amplifier, Stanford Research
Systems, SR830.
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x-y stagestage
control

AOM1

f1 f2
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Figure 3-11: SBIL writing mode for two heterodyne beams. By setting the frequencies
to the acousto-optic modulators (AOMs) and combining the appropriate diffracted
beams, one generates two heterodyne signals at phase meters (PM) 1 and 2. A digital
signal processor (DSP) then compares the signals and drives AOM1 to control the
phase difference between the two arms to increase linearly.

which is denoted by ε. For reference, the functional block diagram of the lock-in

amplifier (Stanford Research Systems, SR830), which is used in the experiment, is

shown in Fig. 3-10 [30].

3.2.2 Heterodyne fringe controller

As in the homodyne case, the image grating produced by interference of two het-

erodyne beams should be locked to move at the frequency difference relative to the

stage.

Figure 3-11 shows a schematic of the SBIL writing mode, which is modified for

the heterodyne period measurement. A laser beam (λ = 351.1 nm, f0 ≈ 854 THz) is
incident onto the acousto-optic modulator AOM3, which splits off a weak first-order

reference beam with frequency fR = f0 + 120 MHz. The undiffracted zeroth-order

68



beam is then split by a grating beam splitter. Each of two first-order beams then

propagates through another AOM (AOM1 and AOM2). The AOM1 is set to generate

a strong first-order diffracted beam at f1 = f0 + 100.001 MHz, while the AOM2 is

configured to generate a first-order beam at f2 = f0 + 100 MHz. The zeroth orders

are dumped. Both arms are reflected by mirrors to intersect at angle 2θ on the zone

plate mounted stage, generating an image grating with period Λ = λ/2 sin θ. Close

to the wafer, each beam is sampled by a weak pickoff splitter. Each beam is then

combined with one-half of the reference beam (fR). Thus two heterodyne signals of

20 MHz and 20.001 MHz are generated, which is then guided through fibers to their

corresponding phase meters, PM1 and PM2. The phase readings φ1 and φ2 from

PM1 and PM2, respectively, are compared by a digital signal processor, which then

calculates the change in the driving frequency of AOM1 that is necessary to lock the

interference fringe relative to the stage.

Paul Konkola has implemented the heterodyne fringe locking controller, and de-

mostrated its short-term stability as one hundredth of a period. However, since it

has been implemented based on the typical SBIL writing mode (f1 = f2 = f0 + 100

MHz), the fringe locking control algorithm should be modified. Reference [22] details

the stage control algorithm, in which the fringe locking error is described by

φfle = φ1 − φ2 − [φxe cosα+ φye sinα] . (3.22)

Here, φ1 and φ2 are the phase readings from PM1 and PM2, respectively, and α

refers to the angle between grating direction and the scan direction. Thus, if the

stage moves perfectly perpendicular to the grating lines, α = 0. The φxe and φye are

the phase errors along the x and the y axes, and they are given by

φxe = φxref − φx + (K1φx +K2)φrefrac, (3.23)

φye = φyref − φy. (3.24)

The φxref and φyref stand for the reference phase counts along the x and y axes, and
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φx and φy are the phase readings from the XY stage interferometers. The φrefrac is

the phase reading from the x axis refractometer that is installed to compensate the

wavelength variation, and the constants K1 and K2 are the refractometer coefficients

found by Paul Konkola empirically [22]. In the current algorithm, the controller tries

to minimize the error toward zero.

For our heterodyne measurement, the difference between two phase readings, (φ1−
φ2 ), increases linearly with the clock count, since there is a frequency difference of

1 kHz. In order to conduct fringe locking for heterodyne cases, the algorithm should

modified as

φfle = φm − φ2 − [φxe cosα+ φye sinα] , (3.25)

where

φm = φ1 − φ1(0)− CfT. (3.26)

Here, φ1(0) is the phase reading from PM1 at T=0, Cf is the slope determined by

the frequency difference of heterodyne beams, and T the clock count. So, the slope

has a unit as [phase counts / clock counts].

3.2.3 Experiment

Figure 3-12 shows a photograph of the heterodyne experimental setup in the Nano-

ruler. A phase zone plate is mounted to the stage along with the lens and the

photodiode. The zone plate has 350 zones, a minimum zone width of 194 nm, and a

diameter of 193 µm. The zone plate is aligned such that its plane is identical to the

substrate plane within 0.5 µm. The alignment is conducted by using a displacement

sensor (Federal Precision Height Stand, Model 2400) and tilt screws of the zone plate

mount. Firstly, the probe tip of the sensor is placed on the substrate, and then its

zero point is set to the current position, i.e., the substrate plane in order for the

following measurements to be referenced to the point. After that, the stage moves to

place the probe tip on the zone plate. Scanning the stage, the zone plate is aligned
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Figure 3-12: The heterodyne period measurement setup
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by the efforts to minimize the deviation of its readout from the zero point.

The beam alignment system is used to overlap the left and right arms in position,

and to equalize two angles of incidence. For the experiment, the beam alignment

software has been operated in the beamplitter mode [19]. After the beam alignment

is completed, the stage moves to the position such that two beams are incident on

the zone plate. Then, the heterodyne beams are generated by changing the driving

frequency of the AOMs. The frequencies of AOM1 is set to 100.001 MHz, for AOM2,

100 MHz, and for AOM3, 120 MHz. Thus, an image grating with fringes that move

at 1 kHz is produced. The lens under the zone plate images the first-order moiré zone

plate and focuses it onto the photodiode, which is connected to the measurement

input of the lock-in amplifier (SR830). In order to detect the reference signal, a

high-frequency photodiode (Melles-Griot, 13 DAH 005) is set up under the optical

bench.

3.2.4 Results and discussion

The period measurement has been conducted without a properly implemented fringe

locking controller because of its unavailability on July, 2003. I used 100 msec as a

time constant of the low-pass filter in the lock-in amplifer, since it takes time to filter

the outputs of the PSDs. The stage moved by twenty steps, and the step size is 40

nm. Since the current Nanoruler is set up to produce a grating of nominal period

400 nm, one can expect two cycles in the amplitude and phase outputs of the lock-in

amplifier. Indeed, it is the case.

Figure 3-13 shows the outputs of the lock-in amplifier. After each step, the data

over 10 seconds were taken, and their average value was recorded in order to minimize

the effect of the phase jitter. Since the phase output range of the lock-in amplifer is

-180∼180 degrees, the jump from 180 degrees to -180 degrees is observed. For the

easier calculation of image grating period, the phase measurement data is unwrapped

by using MATLAB, and the unwrapped one is shown in Fig. 3-14. It demonstrates

linear phase progression by the displacement of the stage. Based on the result, the

image period is obtained as
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Figure 3-13: The heterodyne period measurement. (a) Amplitude variation by the
stage displacement. (b) Phase variation by the stage displacement.
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Λ =

"
1

2π

∆φ

∆x

#−1
=

"
1

2π
· 9.199− (−2.626)

40 · (20− 1)
#−1

= 403.789 nm. (3.27)

As a reference, the period measured by the rectangular beamsplitter is 401.246 nm

[19]. The relatively stable phase progression shown in Figure 3-14 is primarily due to

the much more stabilized environment in the Nanoruler.

3.3 Contrast fluctuation measurement

In order to demonstrate contrast variation of optical power by varying image grating

periods, a simple interferometry has been designed and implemented.

3.3.1 Experiment

Figure 3-15 shows the experimental setup, basically similar to that of the homodyne

period measurement. The difference is that two mirrors in both arms are mounted

on translation stages, which are driven by micrometers. Thus, once a measurement

is completed for an image grating period, the subsequent measurements can be per-
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Figure 3-15: Contrast variation measurement system. It is similar to the homodyne
period measurement system except that two mirrors are mounted to the translation
stage to vary incident angles.

formed by translating the mirrors by the same distance, and adjusting the mirrors

such that the beams are incident on the zone plate. In the setup, the mirrors are set

to translate normal to the beam propagation direction.

The HeNe laser (λ = 632.8 nm) and a phase zone plate with 100 zones, a diameter

of 322 µm, and an innermost zone radius of 16 µm are used. The micrometer (New-

Focus, Model 9353) has a resolution of 10 µm, which is the step size of the mirror

translation. As before, the data acquisition is handled by the National Instruments

A/D board.

Once the optical power is measured for an incident angle as the zone plate moves,

the signal is filtered using an FIR filter (Kaiser Window) to compute the contrast of

optical power. The filter specifications should be modified depending on the image

grating period. The contrast is evaluated by

C =
Pmax − Pmin
Pmax + Pmin

(3.28)

where Pmax and Pmin are the averaged peak and valley values observed at the sinu-
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Figure 3-16: Geometry for incident angle calculation.

soidal optical power variations. Using the initial setup parameters and the mirror

translation step size, the image grating period of each measurement can be derived.

The portion indicated with the dashed lines in Fig. 3-15 is redrawn in Fig. 3-16. The

a0, b0, and c0 are the initial lengths from the mirror to the zone plate, from the

beamsplitter to the zone plate, and from the beamsplitter to the mirror, respectively.

Also, θ0 is the initial incident angle and θ is the incident angle after the mirror is

displaced towards the zone plate by ∆c. The length from the beamsplitter to the

mirror represented by (c0 −∆c) can be expressed by using the second cosine law:

(c0 −∆c)2 = b20 + d2 − 2b0d cos θ, (3.29)

where d stands for the length from the mirror to the zone plate and θ is the incident

angle after the mirror is displaced. A closer examination of the geometry reveals that

d can be also obtained using

d2 = (∆c)2 + a20 − 2a0(∆c) cosβ = (∆c)2 + a20 − 2a0(∆c) cos (π − π/4− θ0) . (3.30)
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Figure 3-17: Contrast measurement results.

Therefore, the incident angle θ can be obtained using Eqns. (3.29) and (3.30) together,

so that image grating periods are predicted.

3.3.2 Results and discussion

The initial interferometry is set up to an incident angle of 11.6 degrees. After the

initial measurement, it was followed by sixty measurements by translating the mirrors,

or consequently varying incident angles. Figure 3-17 shows the experimental results

along with the simulation result. Surprisingly, the experimental results shows high

correspondence to the simulation results, even though there are many uncertainties in

terms of the incident angle measurement and the alignment. In any case, it provides

a confirmation that the contrast of optical power varies with image grating period for

a given Fresnel zone plate.
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Chapter 4

Conclusions

The work presented in this thesis is on the research into a novel image metrology

using a special diffractive structure. The role of image metrology in scanning-beam

interference lithography (SBIL) is critical, since it ensures the precise stitching of sub-

sequent scans. The current SBIL is configured to produce gratings of nominal period

400 nm. However, it is expected to be capable of patterning general gratings such

as linear or chirped gratings by varying beam incident angles or rotating the beams

during the operation. In this case, image grating metrology should be applicable to

measure a wide range of grating periods regardless of changes in grating orientation.

In that aspect, a Fresnel zone plate is a natural choice because of its unique

properties. Its axial symmetry allows us to measure image periods, immune to changes

in grating orientations. Its chirp feature is also important because it can measure a

wide range of grating periods.

In order to understand the basic principle of the Fresnel zone plate and the physics

of image metrology, extensive theoretical studies have been made. Based on the

understanding of the Fresnel zone plate, it has been found that the zone plate can

be regarded as the superposition of one plane wave and multiple converging and

diverging spherical waves with different focal lengths. Indeed, it provides an intuitive

and interesting way to understand the formation of the moiré zones. Moreover, it

helps to define the range of image periods measurable for a given zone plate. The

moiré zone plates are produced by the interference of diffracted waves by a zone plate,
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and they have also been found in a closed mathematical form. Using the irradiance

of the moiré zone plates, the image period can be derived. The contrast (or visibility)

of optical power with varying image periods was also investigated. The question is

whether one can use the same zone plate to characterize a range of image grating

periods. Remarkably, it was found that it is a chirped sinusoidal function of image

period. Namely, the contrast could be zero for some image periods, where the image

metrology cannot be used.

Experiments have been designed and performed to verify the findings in the the-

oretical work. Homodyne period measurement has been performed for two image

periods using the same amplitude zone plate. The zone plate was successful in mea-

suring the image periods with nanometer-level repeatability. As for the heterodyne

period measurement, a phase zone plate was installed to the current SBIL prototype

system, the Nanoruler. Using the phase changes of the optical power transmitted

through the zone plate as the stage is displaced, the image period was calculated and

compared with the result of the beamsplitter scheme, which is currently used in the

Nanoruler. Even without a properly designed fringe locking controller, it follows the

period measured by the beamsplitter closely. The contrast variation measurement

was also carried out with the same experimental setup of the homodyne case. In the

experiment, a phase zone plate was used. For a range of image periods, contrast varies

as a chirped function similar to the zone plate. As the image period is decreased, the

contrast varies more frequently.

With two conditions for image metrology to satisfy: immune to grating orienta-

tions and capability of measuring a wide range of periods, the use of a Fresnel zone

plate would be an excellent choice. Indeed, it can be used to characterize image

gratings as long as its period is in the range of high contrast for a given zone plate.

However, the zone plate scheme is, strictly, limited by its low optical power through-

put, since the optical power of the interference of multiple spherical waves is used in

the measurement.

Future work may include a study of how to increase optical power for image grating

metrology using a Fresnel zone plate. Also, the effect of the amplitude variation of the
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incident waves on the phase measurement and the phase measurement error through

optical power detection are the critical aspects to be fully understood.
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Appendix A

Power estimation of moiré zone

plates

The optical power of moiré zone plates must be higher than the noise equivalent power

(NEP) of a sensor to detect power fluctuations as the Fresnel zone plate moves. The

innermost zone of the first-order moiré zone plate is used for the measurement, so

its power estimation at the design stage would help the implementation of the image

grating metrology using a Fresnel zone plate.

Consider again a diffraction of two plane waves by a Fresnel zone plate as shown in

Figure A-1. Two plane waves are assumed to have a wavelength of λ and an incident

angle of θ. The optical power of an incident plane wave is P0. As they are diffracted

by the Fresnel zone plate, the diffracted waves are superimposed in the observation

plane (x0, y0), forming two diffraction zone plates. The moiré zone plates are produced

by the interference of these two diffraction zone plates. The image grating generated

by the interference of two plane waves has a diameter of d0, and the Fresnel zone

plate is characterized by the innermost zone radius ρ and diameter df . The power of

each diffraction zone plate can then be approximated as

Pc = 2η

Ã
df
d0

!2
P0. (A.1)

Here, I considered only the ±1st diffraction orders which have the highest power,
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Figure A-1: Diffraction of two plane waves by a Fresnel zone plate.

and the η represents the first-order diffraction efficiency. Namely, the power of a

diffraction zone plate is approximately equal to the sum of the power of the ±1st
order diffraction waves, which are reduced by the area ratio of the Fresnel zone plate

to the image grating, beforehand.

Figure A-2 illustrates two overlapped circles. Two circles represent the diffraction

zone plates and the overlap region is the interference region of the diffraction zone

plates in the observation plane. The moiré zone plates are produced in the interference

region. As illustrated, the area of overlap may be regarded as being equal to four

times the shaded area B of the circular sector A+B. The diameter of the circle can

be found by using the geometry in Figure A-1. Since f ¿ z, the diameter of the

circle, dc, is given by

dc =
z

f
df , (A.2)
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Figure A-2: Calculation of the area of overlap of two displaced circles. (a) Overlapping
circles, (b) geometry of the calculation.

where the f is the primary focal length of the Fresnel zone plate, and z is the free-

space propagation distance. The focal length f is related to the innermost zone radius

ρ of the Fresnel zone plate by [??]

f =
ρ2

λ
. (A.3)

The center of circle is separated by z sin θ from the origin, assuming that θ is small.

Thus, the area of the circular sector is

Area(A+B) =
∙
α

2π

¸ Ã
π
d2c
4

!
=

"
arccos(2f sin θ/d0)

2π

#Ã
π
d2c
4

!
(A.4)

while the area of the triangle A is

Area(A) =
1

2
(z sin θ)

s
d2c
4
− (z sin θ)2. (A.5)

Finally, the power of the interference region can be evaluated by

Pb = 2r1Pc, (A.6)

where r1 is the area ratio defined by
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r1 =
4[Area(A+B)−Area(A)]

π(d2c/4)
=
4[Area(A+B)− Area(A)]

Ac
(A.7)

or

r1 =

(
2
π

h
arccos(γ)− γ

√
1− γ2

i
γ ≤ 1

0 otherwise
(A.8)

The quantity γ is defined by

γ =
sin θ

d0/2f
=
sin θ

N.A.
. (A.9)

It says the same argument discussed earlier in that the incident angle of the plane

wave should be smaller than N.A. of the Fresnel zone plate for the diffraction zone

plates to be superimposed on each other in the observation plane. Since the innermost

zone of the first-order moiré zone plate is sampled to maximize the contrast, the area

of the innermost zone needs to be calculated. The radius of the innermost zone can

be found by examining Eqn. (2.37). Using the paraxial approximation, the innermost

zone radius is

ρz =
λz

ρ
. (A.10)

In order to obtain the power of the innermost zone of the first order moiré zone plate,

Eqn. (A.6) needs to be multiplied by another area ratio defined by

r2 =
πρ2z
Ac
, (A.11)

so its power is evaluated by

Pz = 2r1r2Pc = 4r1r2η

Ã
d

d0

!2
P0. (A.12)

The Pz must be higher than the NEP of a sensor to measure power fluctuations of the

moiré zone plate. Figure A-3 shows an example of the calculation of the innermost

86



P
a

ra
m

e
te

r
D

im
e

n
s
io

n
R

e
la

ti
o

n
V

a
lu

e

In
p

u
t 

b
e

a
m

 p
o

w
e

r 
m

W
P

0
1

.5
0

0
E

+
0

1

D
ia

m
e

te
r 

o
f 
im

a
g

e
 g

ra
ti
n

g
m

m
d

0
1

.5
0

0
E

+
0

0

W
a

v
e

le
n

g
th

m
m

λ
4

.0
0

0
E

-0
4

F
re

s
n

e
l 
z
o

n
e

 p
la

te
 d

ia
m

e
te

r
m

m
d

f
2

.0
0

0
E

-0
1

In
n

e
rm

o
s
t 

z
o

n
e

 r
a

d
iu

s
 o

f 
F

re
s
n

e
l 
z
o

n
e

 p
la

te
m

m
1

.0
0

0
E

-0
2

F
re

s
n

e
l 
z
o

n
e

 p
la

te
 f

o
c
a

l 
le

n
g

th
m

m
f 
=

 ρ
^2

/
2

.5
0

0
E

-0
1

F
re

e
 s

p
a

c
e

 p
ro

p
a

g
a

ti
o

n
 d

is
ta

n
c
e

m
m

z
5

.0
0

0
E

+
0

0

T
h

e
 f
ir
s
t 
o

rd
e

r 
d

if
fr

a
c
ti
o

n
 e

ff
ic

ie
n

c
y

4
.0

5
3

E
-0

1

D
ia

m
e

te
r 

o
f 
d

if
fr

a
c
ti
o

n
 z

o
n

e
 p

la
te

m
m

d
c
 =

 z
*d

f 
/ 
f

4
.0

0
0

E
+

0
0

In
c
id

e
n

t 
a

n
g

le
 o

f 
a

 b
e

a
m

ra
d

2
.0

1
4

E
-0

1

N
u

m
e

ri
c
a

l 
a

p
e

rt
u

re
 o

f 
F

re
s
n

e
l 
z
o

n
e

 p
la

te
N

.A
.=

 d
f/
(2

f)
4

.0
0

0
E

-0
1

G
a

m
m

a
s
in

 /
 N

.A
.

5
.0

0
0

E
-0

1

R
a

d
iu

s
 o

f 
in

n
e

rm
o

s
t 
o

f 
th

e
 f
ir
s
t 
o

rd
e

r 
m

o
ir
e

 z
o

n
e

 p
la

te
m

m
 z

z
/ 

2
.0

0
0

E
-0

1

A
re

a
 r

a
ti
o

 o
f 
in

te
rf

e
re

n
c
e

 r
e

g
io

n
 t
o

 d
if
fr

a
c
ti
o

n
 z

o
n

e
 p

la
te

r1
3

.9
1

0
E

-0
1

A
re

a
 r

a
ti
o

 o
f 
th

e
 i
n

n
e

rm
o

s
t 
z
o

n
e

 t
o

 i
n

te
rf

e
re

n
c
e

 r
e

g
io

n
r2

1
.0

0
0

E
-0

2

P
o

w
e

r 
tr

a
n

s
m

it
te

d
 t

h
ro

u
g

h
 F

re
s
n

e
l 
z
o

n
e

 p
la

te
m

W
P

t
=

 P
0
*(

d
f/
d

0
)^

2
2

.6
6

7
E

-0
1

P
o

w
e

r 
o

f 
d

if
fr

a
c
ti
o

n
 z

o
n

e
 p

la
te

m
W

P
c

=
 2

  
P

t
2

.1
6

2
E

-0
1

P
o

w
e

r 
o

f 
th

e
 i
n

n
e

rm
o

s
t 
z
o

n
e

m
W

P
z

=
 2

 r
1

r2
P

c
1

.6
9

0
E

-0
3

ρ
λ

η θ

θ
γ 

= 
ρ 

 =
 λ

ρ

η

Figure A-3: An example of optical power calculation of the innermost zone of the
first order moiré zone plate.
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zone power of the moiré zone plate. The laser beam is assumed to have 15 mW, and

the Fresnel zone plate has 0.4 in numerical aperture. About 0.01% of the input beam

power is found to be used in the image grating metrology. Indeed, it poses a critical

aspect of the image grating metrology using a Fresnel zone plate. As the small image

grating period is approached, the input waves will be diffracted significantly, which

reduces the optical power that can be measured at the sensor.
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Appendix B

MATLAB scripts for Fresnel

diffraction

B.1 prop.m

The program calculates two-dimensional diffraction pattern using the Fresnel diffrac-

tion approximation. The output is the amplitude distribution at the plane which is

apart from the input plane by the distance z.

function f out = prop(f in,sizeo,sizei,lambda,z)

% Computes 2-D propatation using Fresnel diffraction approximation

%

% f out: output field amplitude

%

% f in: input field amplitude

% sizeo: size of scaled output plane

% sizei: size of input plane

% lambda: wavelength of light

% z: propagation distance 10

% check input parameters

if nargin<5 | nargin>6,

disp('prop calling sequence:')
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disp('f_out = prop(f_in,sizeo,sizei,lambda,z)')

disp(sprintf ('\a'))

return

end

% size of input plane 20

[m,n]=size(f in);

m=fix(n/2);

if 2∗m==n,
M = [−m:m−1];

else

M = [−m:m];
end

isgn = (−1).^M;

M = M.^2; 30

del = sizei / n;

lz = lambda ∗ z;

% Compute convolution form of Fresnel diffraction integral

% (del)^2/(λz)

c1 = del^2 / lz;

% exp(jπξ2λz); 40

dd = isgn.∗exp(j∗(π∗c1)∗M);

% Compute convolution kernel of Fresnel diffraction integral

% krnl = exp(jkz)/(jλz) ∗ exp(jπ(ξ2+η2)/(λz))

% For simplicity, constant phase term neglected

krnl = −j/lz ∗ (dd.'*dd);

% Compute Fourier transform

f out = krnl.∗f in;
f out = fft2(f out); 50
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% Compute the preceding term of the Fourier transform evaluated previously

% exp(jπλz∗(x/λz)2)
dd = isgn.∗exp(j∗ pi ∗ lz ∗ M / (sizei^2));

f out = (dd.'*dd) .*f_out;

B.2 propscale.m

The program calculates the appropriate size of the output plane based on the wave-

length, the input plane size, and free propagation distance.

function so = propscale(f in, sizein, lambda, z)

% The program calculates the proper output plane size.

%

% so: size of ouput

%

% f in: input field

% sizein: size of input

% lambda: wavelength

% z: free progation distance

10

if nargin˜=4

disp('propscale calling sequence:')

disp('so = propscale(f_in, sizein, lambda, z)')

disp(sprintf ('\a'))

return

end

m=size(n);

if m(1)==1, m=n; else m=m(1); end

20

sizeout = m ∗ lambda ∗ abs(z) / sizein;
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Appendix C

MATLAB scripts for moiré zone

plate simulations

C.1 ZpIgDiffr.m

The program calculates the irradiance distribution of the observation plane, which

is apart from the input plane by the propagation distance, z. The input waves are

assumed to be unit-amplitude plane waves and the diffraction is evaluated based on

the codes in [ B].

clear all;

clc;

lambda = 0.3512; % wavelength, in um

k = 2∗pi/lambda; % wave number

% range of input plane, in um

range = 100;

npts = 2048;

10

% generate the space of input plane

x = linspace(−range, range, npts);
y = linspace(−range, range, npts);
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% free propagation distance, in um

z=100e3;

N = 14; % number of zones

rho = 8; % the first zone radius, in um

20

% 2-D amplitude Fresnel zone plate

zp = zp2d(lambda, x, y, rho, N);

p = 1.44085; % image grating period, in um

theta = asin(lambda/2/p); % angle of incidence, in rad

% generate image grating

for m=1:npts

for n=1:npts

gratings(n,m) = exp(j∗2∗pi∗sin(theta)/lambda ∗ x(m)+j∗pi). . . 30

+exp(−j∗2∗pi∗sin(theta)/lambda ∗ x(m));
end;

end;

% superposition between image grating and Fresnel zone plate

f = zp.∗gratings;

% free propagation using Fresnel diffraction approximation

sizei = 2∗range;
sizeo = propscale(f,sizei,lambda,z); 40

g = prop(f, sizeo, sizei, lambda, z);

% calculate irradiance distribution in the observation plane

I = g.∗conj(g);

% sample the innermost zone of the first-order moiré zone plate

rSamp = 1;

mask = circ2d(rSamp, x, y);

I = I.∗mask;
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50

% plot irradiance distribution. The observation plane is rescaled to

% millimeters.

scale = sizeo/sizei;

image(x(850:1200)∗scale/1000, y(850:1200)∗scale/1000, I(850:1200, 850:1200)∗1.0e7);

xlabel('x (mm)');ylabel('y (mm)');

colormap(copper);

brighten(0.6);

60

C.2 Zp2d.m

The program generates two-dimensional amplitude Fresnel zone plate based on the

discussion in 2.1.

function zp = zp2d(lambda, x, y, rho, N)

% zp2d.m

% It generates a Fresnel zone plate defined by the parameters described below.

% lambda: wavelength of light, in um

% x: x coordinates on input plane

% y: y coordinates on input plane

% rho: radius of the innermost zone

% N: number of zones

k = 2∗pi/lambda; % wave number 10

R = sqrt(N ∗ rho^2); % radius of Fresnel zone plate

% amplitude trasmittance function for Fresnel zone plate, Goodman, p.124

% Here, I only use fundamental frequency for simplicity. Namely, I don’t use “sign” function.

% For reference,

% for m=1:npts

% for n=1:npts

% zoneplate(n,m) = (1/2) ∗ (1 + sign(cos(pi/(rho^2) ∗ (x(m)^2+y(n)^2))));
% end;
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% end; 20

for m=1:length(x)

for n=1:length(y)

zones(n,m) = (1/2) ∗ (1 + (cos(pi/(rho^2) ∗ (x(m)^2+y(n)^2))));

end;

end;

% aperture of Fresnel zone plate

aperture = circ2d(R, x, y);

zp = zones.∗aperture; 30

C.3 circ2d.m

The program generates a circle that is defined by the input radius.

function c = circ2d (Radius, x, y)

% This function generates a 2-D circle defined by Radius.

% Radius: radius of circle

% x: x coordinates

% y: y coordinates

% grid generation

[tempx, tempy] = meshgrid(x, y);

% circle generation, if d<radius, c=1; 10

d = sqrt(tempx.^2+tempy.^2);

c = (d <= Radius);
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Appendix D

MATLAB scripts for image grating

period calculations

D.1 PVdetector.m

The program obtains the locations (xPk, xVy) and values (Pk, Vy) of peaks and

valleys in the input signal, based on the algorithm discussed in 3.1.1. It assumes that

the signal begins and ends close to the centerline of the amplitude, i.e., the DC level.

function [xPk, Pk, xVy, Vy] = PVdetector(sig, thresPk, thresVy)

% It obtains the locations and values of peaks and valleys in the signal.

% If the signal begins below the threshold value,

% exceed the threshold at some location, and then return to a value below,

% one peak exists in that region. The valleys are also found in the same

% way.

%

% sig: signal

% thresPk: threshold value for peak detection

% thresVy: threshold value for valley detection 10

% initialize output variables

xPk = [ ];

xVy = [ ];
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Pk = [ ];

Vy = [ ];

% initialize temporary variables

xTemp = [ ];

yTemp = [ ]; 20

% for peak, fpeak = 1, and for valley, fpeak = 0

fpeak = 0;

% search for peaks and valleys

for i=1:length(sig)

% signal is above thresPK

if sig(i) > thresPk

fpeak = 1;

xTemp = [xTemp, i]; 30

yTemp = [yTemp, sig(i)];

% signal is below thresVy

elseif sig(i) < thresVy

fpeak = 0;

xTemp = [xTemp, i];

yTemp = [yTemp, sig(i)];

% signal is between thresVy and thresPk

else

% if xTemp is filled

if length(xTemp) ˜= 0 40

% fit the data stored in xTemp and yTemp to a second order

% polynomial

p = polyfit(xTemp, yTemp, 2);

% Take the polynomial,

q = polyder(p);

% and obtain the root to find the location of peak or valley.

r = roots(q); 50
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% calculate the value of peak or valley using the root found

% before

y = polyval(p, r);

% if it is peak, append it to the array of peaks.

if fpeak == 1

x pk = [x pk, r];

pk = [pk, y];

% if it is valley, append it to the array of valleys. 60

elseif fpeak == 0

x vy = [x vy, r];

vy = [vy, y];

end;

x temp = [ ];

y temp = [ ];

end;

end;

end;

70

D.2 countCycles.m

The program calculates total number of cycles, N = Ni + Nm + Nf . The returned

value is used to obtain image grating period by Λ = D/N .

function cnt = countCycles(yi, yf, xPk, Pk, xVy, Vy)

% countCycles returns total number of cycles in the signal, N = Ni + Nm +

% Nf.

% yi: initial readout before stage moves

% yf: final readout after stage stops

% xPk: peak locations
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% Pk: peak values

% xVy: valley locations

% Vy: valley values 10

% calculate number of peaks and valleys

numPk = length(xPk);

numVy = length(xVy);

% temporary values

totPk = 0;

totVy = 0;

% calculate average peak value 20

for i=1:numPk−1

totPk = totPk+Pk(i);

end;

avePk = totPk/numPk;

% calculate average valley value

for i=1:numVy−1

totVy = totVy+Vy(i);

end;

aveVy = totVy/numVy; 30

% calculate A and B of a sinusoidal

A = abs(avePk−aveVy)/2;
B = abs(avePk+aveVy)/2;

% calculate fractional cycles, Ni and Nf

Ni = 1/4 − 1/(2∗pi)∗abs(asin(abs(yi−B)/A));
Nf = 1/4 − 1/(2∗pi)∗abs(asin(abs(yf−B)/A));

% calculate completed cycles, Nm 40

if numPk > numVy

Nm = numVy;

elseif numPk == numVy

100



Nm = numPk−0.5;

else

Nm = numPk;

end;

cnt = Ni+Nm+Nf;
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Appendix E

MATLAB scripts for optical power

contrast fluctuations

E.1 contCalc.m

The program performs optical power contrast calculations with varying image grating

period. For simplicity, the code is written for one-dimensional case. It produces two

plots: optical power variation vs. image grating period and contrast variation vs.

image grating period.

clear all;

clc;

lambda = 0.3512; % wavelength, in um

k = 2∗pi/lambda; % wave number

% range of input plane, in um

range = 100;

npts = 2048;

10

% generate grids

x = linspace(−range, range, npts);
dx = 2∗range/npts;
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z=100e3; % free propagation distance, in um

sampA = 1; % sample area for power calculation, in mm

N = 14; % number of zones

rho = 8; % the innermost zone radius, in um

20

% generate 1-D amplitude Fresnel zone plate

zp = zp1d(lambda, x, rho, N);

% initialize all arrays and parameters

arrN = [ ]; % numerator, N(Λ)

arrD = [ ]; % denominator, D(Λ)

arrC = [ ]; % contrast, C(Λ)

i = 0; % enumerator

step = 0.05; % step size for relative motion of image grating and Fresnel zone plate

30

% p: image grating period.

% p is represented by Λ in the thesis.

for p = 1.2:0.01:1.8

% incident angle

theta = asin(lambda/2/p);

i = i+1;

d = 0; 40

maxPwr = 0;

minPwr = 0;

arrPwr = [ ];

for index=0:55

% clear arrays

clear gratings;
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% displacement of image grating relative to Fresnel zone plate 50

d = index∗step;

% generate grating

gratings = exp(j∗2∗pi∗sin(theta)/lambda ∗ (x+d))+exp(−j∗2∗pi∗sin(theta)/lambda ∗ (x+d));

% superposition between image grating and Fresnel zone plate

f = zp.∗gratings;

% free propagation through z

sizei = 2∗range; 60

sizeo = length(f) ∗ lambda ∗ abs(z) / sizei;
scale = sizeo/sizei;

g = prop1d(f, sizeo, sizei, lambda, z);

% evaluate intensity

I = g.∗conj(g);

% sample innermost zone of the first-order moiré zone plate.

mask = circ(sampA, x);

I = I.∗mask; 70

% evaluate optical power

arr pwr(index+1) = sum(I∗dx∗scale);
end;

% obtain max. and min. power

maxPwr = max(arrPwr);

minPwr = min(arrPwr);

% image grating period array 80

arrp(i) = p;

% D(Λ): average power

arrD(i) = (maxPwr + minPwr)/2;
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% N(Λ) assuming the initial phase difference of two beams is zero.

arrN(i) = arrPwr(1) − arrD(i);

% contrast array

arrC(i) = (maxPwr − minPwr) / (maxPwr + minPwr); 90

end;

% plot N(Λ), D(Λ), and P (Λ)

figure;

plot(arrp, arrN, 'r');

hold on;

plot(arrp, arrD, 'b');

hold on;

plot(arrp, arrN+arrD, ':k'); 100

hold on;

legend('N(Λ)','D(Λ)','P (Λ)');

xlabel('Λ');

ylabel('Power (a.u.)');

xlim([1.208 1.785]);

% plot contrast vs. image grating period, C(\Lambda)
figure;

plot(arrp, arrC, 'k');

xlim([1.208 1.785]); 110

xlabel('Λ');

ylabel('Contrast');
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